Transcriptomics

Dataset Information

0

The NuA4 complex promotes Translesion Synthesis (TLS) - mediated DNA damage tolerance


ABSTRACT: DNA lesions can block a replication fork, leading to its collapse and gross chromosomal rearrangements. To circumvent such outcomes, DNA damage tolerance (DDT) pathways become engaged, allowing the replisome to bypass the lesion and complete S phase in the presence of unrepaired damage. Here we demonstrate a newly identified role for NuA4, including complex components Esa1 and Yng2, on the Translesion Synthesis (TLS) branch of DDT. Moreover, Our data suggest that NuA4 functionality within the tolerance pathway is likely direct as genome-wide transcriptional analysis with esa1-L254P mutants showed little changes in the expression of TLS factors compared to wild type during MMS treatment. When Yng2 expression is restricted to G2/M, cell viability and mutagenesis rates are restored to the levels measured when only the error-free branch of DDT is disrupted, indicating that the critical role of NuA4 in TLS functions in G2, after chromosomal replication is complete. Lastly, disruption of HTZ1, the Saccharomyces cerevisiae histone variant H2A.Z and target of NuA4, exhibits mutagenic rates of reversion that are comparable to the levels measured with NuA4 complex mutants, esa1-L254P and yng2Δ.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE66176 | GEO | 2015/02/21

SECONDARY ACCESSION(S): PRJNA276018

REPOSITORIES: GEO

Similar Datasets

2015-02-21 | E-GEOD-66176 | biostudies-arrayexpress
2024-04-15 | GSE253991 | GEO
2020-05-01 | GSE145976 | GEO
2017-01-19 | GSE92774 | GEO
2019-11-06 | PXD015488 | Pride
| PRJNA276018 | ENA
2019-10-29 | GSE90157 | GEO
2018-08-15 | GSE109235 | GEO
2008-06-16 | E-GEOD-9840 | biostudies-arrayexpress
2021-12-20 | PXD030302 | Pride