Genomics

Dataset Information

0

5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats


ABSTRACT: Though obesity is a global epidemic, the physiological mechanisms involved are little understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesized that maternal diet influences fetal 5-HT exposure, which then influences central appetite network development and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant low protein fed rat mothers exhibited elevated serum 5-HT, which was also evident in the placenta and fetal brains at E16.5. This increase was associated with reduced hypothalamic expression of 5-HT2CR - the primary 5-HT receptor influencing appetite. As expected, reduced 5-HT2CR expression was associated with impaired sensitivity to 5-HT-mediated appetite suppression. 5-HT primarily achieves effects on appetite via 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We reveal that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC and that 5-HT2AR mRNA is increased in the hypothalamus of in utero growth restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals are more sensitive to 5-HT2AR agonist-induced appetite suppression. These findings may not only reveal a 5-HT-mediated mechanism underlying programming of obesity susceptibility but also provide a promising means to correct it, via a 5-HT2AR agonist treatment.

ORGANISM(S): Rattus norvegicus

PROVIDER: GSE76012 | GEO | 2016/02/25

SECONDARY ACCESSION(S): PRJNA305996

REPOSITORIES: GEO

Similar Datasets

2016-02-25 | E-GEOD-76012 | biostudies-arrayexpress
2024-03-13 | GSE261455 | GEO
2018-01-29 | PXD002119 | Pride
2022-11-08 | GSE210311 | GEO
2021-05-14 | GSE154153 | GEO
2013-11-14 | E-GEOD-44080 | biostudies-arrayexpress
2013-11-14 | E-GEOD-44081 | biostudies-arrayexpress
2013-11-14 | GSE44081 | GEO
2013-11-14 | GSE44080 | GEO
2020-10-11 | GSE148641 | GEO