Genomics

Dataset Information

0

Ribonuclease Selection for Ribosome Profiling


ABSTRACT: Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome-mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns, and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems

ORGANISM(S): Mus musculus Saccharomyces cerevisiae BY4741

PROVIDER: GSE82220 | GEO | 2016/09/20

SECONDARY ACCESSION(S): PRJNA324380

REPOSITORIES: GEO

Similar Datasets

2024-03-27 | PXD051035 | iProX
2016-02-11 | E-GEOD-76117 | biostudies-arrayexpress
2016-02-11 | GSE76117 | GEO
2012-06-21 | GSE38807 | GEO
2012-06-20 | E-GEOD-38807 | biostudies-arrayexpress
2018-02-12 | GSE65948 | GEO
2021-09-09 | PXD019329 | Pride
2018-07-13 | GSE102318 | GEO
2023-04-01 | GSE173464 | GEO
| PRJNA324380 | ENA