Genomics

Dataset Information

0

Dynamic Control of X-Chromosome Conformation and Repression by a Histone H4K20 Demethylase


ABSTRACT: Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. Structure and activity of dosage-compensation-complex (DCC) subunit DPY-21 defined a novel Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminated H4K20me1 enrichment in somatic cells, elevated X-linked gene expression, reduced X-chromosome compaction, and disrupted X-chromosome conformation by diminishing formation of topologically-associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.

ORGANISM(S): Caenorhabditis elegans

PROVIDER: GSE84581 | GEO | 2017/08/31

SECONDARY ACCESSION(S): PRJNA330391

REPOSITORIES: GEO

Similar Datasets

2015-11-09 | GSE67650 | GEO
2015-11-09 | E-GEOD-67650 | biostudies-arrayexpress
2016-03-25 | E-GEOD-79597 | biostudies-arrayexpress
2019-09-05 | GSE128566 | GEO
2019-09-05 | GSE128564 | GEO
2019-09-05 | GSE128559 | GEO
2013-08-31 | E-GEOD-48413 | biostudies-arrayexpress
2016-03-25 | GSE79597 | GEO
2015-06-03 | GSE63717 | GEO
2015-06-03 | GSE59715 | GEO