Genomics

Dataset Information

0

Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice


ABSTRACT: The prevalence of the metabolic syndrome (MS) is rapidly increasing all over the world. Consequently, there is an urgent need for more effective intervention strategies. Both animal and human studies indicate that lipid oversupply to skeletal muscle can result in insulin resistance which is one of the charecteristices of the MS. C57BL/6J mice were fed a low fat (10 kcal%) palm oil diet or a high fat (45 kcal%; HF) palm oil diet for 3 or 28 days. By combining transcriptomics with protein and lipid analyses we aimed to better understand the molecular events underlying the early onset of the MS. Short-term HF-feeding led to altered expression levels of genes involved in a variety of biological processes including morphogenesis, energy metabolism, lipogenesis and immune function. Protein analysis showed increased levels of the myosin heavy chain, slow fiber type protein and the complexes II, III, IV and V of the oxidative phosphorylation. Furthermore, we observed that the main mitochondrial membrane phospholipids, phosphatidylcholine and phosphatidylethanolamine, contained more saturated fatty acids. Altogether, these results point to a morphological as well as a metabolic adaptation by promoting a more oxidative fiber type. We hypothesize that after this early adaptation, a continued transcriptional down-regulation of genes involved in oxidative phosphorylation will result in decreased oxidative capacity at a later stage. Together with increased saturation of phospholipids of the mitochondrial membrane this can result in decreased mitochondrial function which is a hallmark observed in insulin resistance and type 2 diabetes. Keywords: diet intervention and time course

ORGANISM(S): Mus musculus

PROVIDER: GSE8524 | GEO | 2007/11/30

SECONDARY ACCESSION(S): PRJNA101649

REPOSITORIES: GEO

Similar Datasets

2007-11-30 | E-GEOD-8524 | biostudies-arrayexpress
2018-06-27 | GSE116270 | GEO
2012-06-18 | GSE18586 | GEO
2012-06-17 | E-GEOD-18586 | biostudies-arrayexpress
2021-12-14 | PXD025935 | Pride
2021-11-16 | GSE149047 | GEO
2017-10-02 | GSE77431 | GEO
2016-05-18 | E-GEOD-73290 | biostudies-arrayexpress
2017-10-02 | GSE77430 | GEO
2010-08-10 | E-GEOD-17576 | biostudies-arrayexpress