Transcriptomics

Dataset Information

0

Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence


ABSTRACT: Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant that is defective in both converting acetyl-CoA to acetate and commensal colonization of young chicks, we discovered evidence for C. jejuni sensing spatial gradients of microbiota-derived short-chain fatty acids (SCFAs) and organic acids to modulate expression of determinants required for commensalism. We identified in C. jejuni an SCFA-influenced regulon composed by genes encoding catabolic enzymes and transport systems for amino acids C. jejuni requires for in vivo growth. Expression of these genes was reduced in the acetogenesis mutant, but restored upon supplementation with physiological concentrations of SCFAs such as acetate and butyrate that are present in the lower intestinal tract of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract of these hosts where C. jejuni less efficiently colonizes reduced expression of this regulon. We propose a model whereby C. jejuni senses microbiota-produced SCFAs and lactate for spatial orientation in the avian and human host. Sensing these metabolites likely allows C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for in vivo growth. Our findings provide insights into the types of signals C. jejuni monitors in the avian host for commensalism and likely in the human host to promote diarrheal disease.

ORGANISM(S): Campylobacter jejuni

PROVIDER: GSE86327 | GEO | 2016/09/02

SECONDARY ACCESSION(S): PRJNA341455

REPOSITORIES: GEO

Similar Datasets

2008-11-01 | GSE12903 | GEO
2010-05-17 | E-GEOD-12903 | biostudies-arrayexpress
2015-03-17 | GSE66942 | GEO
2020-10-07 | GSE147629 | GEO
2019-04-11 | GSE114909 | GEO
2022-08-08 | GSE200309 | GEO
2011-05-27 | GSE29563 | GEO
2011-05-27 | GSE29562 | GEO
2011-05-27 | E-GEOD-29563 | biostudies-arrayexpress
2011-05-27 | E-GEOD-29562 | biostudies-arrayexpress