Project description:apply C8 column and 7.5 minutes run to feces, small intestine and large intestine samples from mice under negative polarity mode in ddMS2.
Project description:ddMS2 run of mouse lung tissue and plasma extract using C8 column in 7.5-minute gradient and positive polarity mode in Q Exactive plus.
Project description:ddMS2 run of mouse lung tissue and plasma extract using C8 column in 7.5-minute gradient and positive polarity mode in Q Exactive plus.
Project description:Metabolites (aqueous & organic) were extracted from mouse tissues and tissues' contents (SI duodenum, SI jejunum, SI ileum, cecum, large intestine, small intestine, contents, cecum contents, large intestine content, heart, Liver, quad ) and were run by LC-MS, C8 in positive mode.
Project description:Metabolites (aqueous & organic) were extracted from mouse tissues and tissues' contents (SI duodenum, SI jejunum, SI ileum, cecum, large intestine, small intestine, contents, cecum contents, large intestine contents, heart, liver, and quad) and were run by LC-MS, C8 in positive mode.
Project description:Large intestine samples from mice infected with 50,000 Trypanosoma cruzi parasites or left uninfected. One week post-infection, mice were treated with carnitine, benznidazole or vehicle. Animals were euthanized after 10 days of treatment and organs collected. Metabolites were extracted with 50% methanol followed by 3:1 dichloromethane-methanol and analyzed by C8 chromatography, with negative mode ddMS2 data collection (data-dependent).
Project description:Large intestine samples from mice infected with 50,000 Trypanosoma cruzi parasites or left uninfected. One week post-infection, mice were treated with carnitine, benznidazole or vehicle. Animals were euthanized after 10 days of treatment and organs collected. Metabolites were extracted with 50% methanol followed by 3:1 dichloromethane-methanol and analyzed by C8 chromatography, with positive mode ddMS2 data collection (data-dependent).
Project description:Dietary methionine restriction represses growth and improves therapeutic responses in several pre-clinical settings. However, how this dietary intervention impacts cancer progression in the context of the immune system is unknown. Here we analyzed the CD45+ immune cells from the small intestine of control (CTRL) diet or methionine-restricted (MR) diet fed tumor-free C57BL/6J donor mice and tumor-bearing Apc <min+/-> recipient mice transplanated with feces from these diet-fed tumor-free C57BL/6J mice by scRNA-seq. Our analysis indicate that fecal microbes from methionine-restricted tumor-free C57BL/6J mice are sufficient to represss T cell activation in the small intestine of Apc <min+/-> mice.
Project description:Gut microbiome modulates the host immune development, yet the functional contribution of gut fungi remains elusive. We previously showed that mice colonized only with fungi displayed allergic features and fecal metabolite profiles similar to germ-free mice. To gain insights into the functional changes attributed to fungal colonization, we performed proteomic analyses of feces and small intestine of gnotobiotic mice colonized with either bacteria, fungi, or both. Comparison of fecal metaproteomic profiles between mouse groups yielded broad changes in the relative levels of bacterial, fungal and mouse proteins. Many of the detected fungal proteins have been previously reported as a part of extracellular vesicles and having immunomodulating properties. Changes in the levels of mouse proteins derived from the small intestine impacted essential cellular pathways, including lipid metabolism and apoptosis. The results show how fungal colonization impacts the host proteome and suggest an influence on the host final cellular phenotype.