Project description:Escherichia coli spans a genetic continuum from enteric strains to several phylogenetically distinct, atypical lineages that are rare in humans, but more common in extra-intestinal environments. To investigate the link between gene regulation, phylogeny and diversification in this species, we analyzed global gene expression profiles of four strains representing distinct evolutionary lineages, including a well-studied laboratory strain, a typical commensal (enteric) strain and two environmental strains. RNA-Seq was employed to compare the whole transcriptomes of strains grown under batch, chemostat and starvation conditions. Highly differentially expressed genes showed a significantly lower nucleotide sequence identity compared with other genes, indicating that gene regulation and coding sequence conservation are directly connected. Overall, distances between the strains based on gene expression profiles were largely dependent on the culture condition and did not reflect phylogenetic relatedness. Expression differences of commonly shared genes (all four strains) and E. coli core genes were consistently smaller between strains characterized by more similar primary habitats. For instance, environmental strains exhibited increased expression of stress defense genes under carbon-limited growth and entered a more pronounced survival-like phenotype during starvation compared with other strains, which stayed more alert for substrate scavenging and catabolism during no-growth conditions. Since those environmental strains show similar genetic distance to each other and to the other two strains, these findings cannot be simply attributed to genetic relatedness but suggest physiological adaptations. Our study provides new insights into ecologically relevant gene-expression and underscores the role of (differential) gene regulation for the diversification of the model bacterial species. Four E.coli strains, laboratory strain K12 (MG1655), a commensal model strain (IAI1), a soil-isolated strain (TW11588-Clade IV), and a freshwater-isolated strain (TW09308âClade V) were used. Each strain was grown on a minimal growth medium (Ihssen and Egli, 2004) in three treatment modes: chemostat, batch, and starvation. Cells from batch culture were collected when reaching steady-state. For starvation, the medium flow was stopped during steady-state and bacteria were collected after 4âh.
Project description:Time-course transcriptomic profilling of the oleaginous yeast Yarrowia lipolytica, during a controlled fed-batch. A nitrogen limitation was applied during the course of the fed-batch to initiate de novo biolipid synthesis.
Project description:Four C. thermocellum DSM-1313 derived strains were assessed using metabolite and DNA microarray tools in order to better understand carbon and electron flow within this organism. C. thermocellum is able to ferment cellulose into its fermentation end products L-lactate, acetate, formate, hydrogen gas, and ethanol, with the latter being the desired end product to be used as biorenewable fuel. In addition to the parent strain (genotype: hpt spo0A), strains with either or both of the genes encoding lactate dehydrogenase (ldh) and phosphate acetyltransferase (pta) deleted were studied. The strains used are a parent strain (M1726: genotype: hpt spo0A), and strains with either the gene encoding lactate dehydrogenase (M1629: hpt spo0A ldh) or phosphate acetyltransferase (M1630: hpt spo0A pta) deleted, or with both genes deleted (M1725: hpt spo0A ldh pta). Controlled batch fermentations using cellobiose as sole carbon source were grown for each strain, and samples in mid-exponential phase and at the time of carbon depletion were examined by DNA microarray.
Project description:Strong production of recombinant proteins interfere with cellular processes in many ways. The extent of the bacterial stress response is determined by the specific properties of the recombinant protein, and by the rates of transcription and translation. The consideration of bacterial stress and starvation responses is of crucial importance for the successful establishment of an industrial large scale bioprocess. Stress genes can be used as marker genes in order to monitor the fitness of industrial bacterial hosts during fermentation processes. For this purpose, here in our study we have applied transcriptome analysis for the description of general and specific stress and starvation responses of Escherichia coli. Producing recombinant protein (Xylanase) in high cell density fed batch culture.