Project description:For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil diazotrophs and their consortia in communities of soil bacteria.
Project description:Tiny Earth (TE) is a popular international citizen science program aimed at improving public awareness on the growing antimicrobial resistance problem of which MicroMundo Albacete is a Spanish node. With a protocol that is focused on the isolation of antibiotics-producing actinomycetes from soil, 70% of the high school students in MicroMundo Albacete 2020 isolated colonies with antagonistic activity against Gram-positive tester bacteria. However, no activity was found against Gram-negative bacteria. Here, we further adapted the protocol toward a more targeted screening that also enables isolation of antagonistic bacteria against Gram negatives using two different reverse-antibiosis approaches involving a spraying technique or flipping soil sample disks upside down. Exploiting the soil samples from MicroMundo Albacete 2020, the new approaches yielded isolation of actinomycete bacteria with antagonistic activity against Gram-negative as well as Gram-positive tester bacteria. We propose that (educational) science programs which aim to search for antibiotic-producing bacteria may implement these approaches in their protocol to promote a successful and stimulating outcome of the experiment for the participating students.
Project description:Soil has been used to generate electrical power in microbial fuel cells (MFCs) and exhibited several potential applications. This study aimed to reveal the effect of soil properties on the generated electricity and the diversity of soil source exoelectrogenic bacteria. Seven soil samples were collected across China and packed into air-cathode MFCs to generate electricity over a 270 days period. The Fe(III)-reducing bacteria in soil were enriched and sequenced by Illumina pyrosequencing. Culturable strains of Fe(III)-reducing bacteria were isolated and identified phylogenetically. Their exoelectrogenic ability was evaluated by polarization measurement. The results showed that soils with higher organic carbon (OC) content but lower soil pH generated higher peak voltage and charge. The sequencing of Fe(III)-reducing bacteria showed that Clostridia were dominant in all soil samples. At the family level, Clostridiales Family XI incertae sedis were dominant in soils with lower OC content but higher pH (>8), while Clostridiaceae, Lachnospiraceae, and Planococcaceae were dominant in soils with higher OC content but lower pH. The isolated culturable strains were allied phylogenetically to 15 different species, of which 11 were Clostridium. The others were Robinsoniella peoriensis, Hydrogenoanaerobacterium saccharovorans, Eubacterium contortum, and Oscillibacter ruminantium. The maximum power density generated by the isolates in the MFCs ranged from 16.4 to 28.6 mW m-2. We concluded that soil OC content had the most important effect on power generation and that the Clostridiaceae were the dominant exoelectrogenic bacterial group in soil. This study might lead to the discovery of more soil source exoelectrogenic bacteria species.
Project description:Several studies isolated fungal and bacterial species from extreme environments, such as Sabkha and hot deserts, as their natural habitat, some of which are of medicinal importance. Current research aimed investigating the microbial (fungi and bacteria) diversity and abundance in Sabkha and desert areas in Saudi Arabia. Soil samples from nine different geographical areas (Al-Aushazia lake, AlQasab, AlKasar, Tabuk, Al-Kharj, Al-Madina, Jubail, Taif and Abqaiq) were collected and cultured for microbial isolation. Isolated fungi and bacteria were identified by molecular techniques (PCR and sequencing). Based on 18S rDNA sequencing, 203 fungal species belonging to 33 genera were identified. The most common fungal genera were Fusarium, Alternaria, Chaetomium, Aspergillus Cochliobolus and Pencillium, while the most common species were Chaetomium globosum and Fusarium oxysporum. By 16S rDNA sequencing 22 bacterial species belonging to only two genera, Bacillus and Lactobacillus, were identified. The most commonly isolated bacterial species were Bacillus subtilis and Lactobacillus murinus. Some fungal species were confined to specific locations, such as Actinomyces elegans, Fusarium proliferatum, Gymnoascus reesii and Myzostoma spp. that were only isolated from Al-Aushazia soil. AlQasab soil had the highest microbial diversity among other areas with abundances of 23.5% and 4.4% of total fungi, and bacteria, respectively. Findings of this study show a higher degree of fungal diversity than that of bacteria in all studied areas. Further studies needed to investigate the connection between some isolated species and their habitat ecology, as well as to identify those of medicinal importance.
Project description:The species of the genus Brachybacterium belonging to the family Dermabacteraceae within the phylum Actinobacteria are gram-positive, facultatively anaerobic or aerobic, nonmotile and nonsporeforming bacteria. Cells of Brachybacterium spp. vary in shape from coccoid forms (stationary phase) to rods (exponential phase). Brachybacterium species can be isolated from numerous sources such as poultry deep litter, human gut, soil, food products. Here we describe the draft genome sequence of Brachybacterium sp. EE-P12 that was isolated from a laboratory-scale anaerobic digester. The genome sequencing generated 3,964,988 bp, with a G+C content of 72.2%. This draft genome data has been deposited at DDBJ/ENA/GenBank under the accession number QXCP00000000 (https://www.ncbi.nlm.nih.gov/nuccore/QXCP00000000).
Project description:Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO2+Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.
Project description:To address the problem of marine pollution from discarded plastics, we developed a highly biodegradable woody film, with almost the same components as wood, from the formic acid solution of ball-milled wood. We found that the woody film was not easily degraded by cultured solution of hand bacteria (phylum Proteobacteria was dominant). However, the film was easily biodegraded when in cultured solution of soil (Firmicutes, especially class Bacilli, was dominant) for 4 weeks at 37?°C, or when buried in the soil itself, both under aerobic conditions (Acidobacteria and Proteobacteria were dominant) for 40 days at room temperature and under anaerobic conditions (Firmicutes, especially family Ruminococcaceae, was dominant) for 5 weeks at 37?°C. Moreover, when film was buried in the soil, more carbon dioxide was generated than from soil alone. Therefore, the film was not only brittle but formed of decomposable organic matter. We showed that the film does not decompose at the time of use when touched by the hand, but it decomposes easily when buried in the soil after use. We suggest that this biodegradable woody film can be used as a sustainable raw material in the future.
Project description:The Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (?-carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
Project description:New cultured strains of the planctomycete division (order Planctomycetales) of the domain Bacteria related to species in the genera Gemmata and Isosphaera were isolated from soil, freshwater, and a laboratory ampicillin solution. Phylogenetic analysis of the 16S rRNA gene from eight representative isolates showed that all the isolates were members of the planctomycete division. Six isolates clustered with Gemmata obscuriglobus and related strains, while two isolates clustered with Isosphaera pallida. A double-membrane-bounded nucleoid was observed in Gemmata-related isolates but not in Isosphaera-related isolates, consistent with the ultrastructures of existing species of each genus. Two isolates from this study represent the first planctomycetes successfully cultivated from soil.
Project description:Water is essential for life on Earth, and an important medium for microbial energy and metabolism. Dormancy is a state of low metabolic activity upon unfavorable conditions. Many microorganisms can switch to a metabolically inactive state after water shortage, and recover once the environmental conditions become favorable again. Here, we resuscitated dormant anammox bacteria from dry terrestrial ecosystems after a resting period of >10?ka by addition of water without any other substrates. Isotopic-tracer analysis showed that water induced nitrate reduction yielding sufficient nitrite as substrate and energy for activating anammox bacteria. Subsequently, dissimilatory nitrate reduction to ammonium (DNRA) provided the substrate ammonium for anammox bacteria. The ammonium and nitrite formed were used to produce dinitrogen gas. High throughput sequencing and network analysis identified Brocadia as the dominant anammox species and a Jettenia species seemed to connect the other community members. Under global climate change, increasing precipitation and soil moisture may revive dormant anammox bacteria in arid soils and thereby impact global nitrogen and carbon cycles.