Project description:Bacillus cereus is the second leading cause of collective food poisoning in France. B. cereus is also associated with severe clinical infections leading to patient death in 10% of the cases. The emergence of B. cereus as a foodborne and opportunistic pathogen has intensified the need to distinguish strains of public health concern. In this work, by performing a screen on a large collection of B. cereus strains of varying pathogenic potential, we identified genetic determinants capable of discriminating B. cereus strains inducing negative clinical outcomes. The combination of 4 biomarkers is sufficient to accurately discern clinical strains from harmless strains. Three of the biomarkers are located on the chromosome, with a fourth one identifying a plasmid carried by most pathogenic strains. A 50 kbp region of this plasmid promotes the virulence potential of these strains and could thus be defined as a new pathogenicity island of B. cereus. These new findings help in the understanding of B. cereus pathogenic potential and complexity and may provide tools for a better assessment of the risks associated with B. cereus contamination to improve patient health and food safety.
Project description:We installed and optimized a genetic tool that allows control over protein stability in a model cyanobacterium. This tool has potential uses for the fundamental study of cyanobacterial genes, and may be useful for the design of more sophisticated, bioindustrial cyanobacterial strains.
Project description:Metabolomics data from 3 strains in the NBC collection that carry a Pekiskomycin BGC.
The strains were grown in R5 media and represent a WT strain, strain with a StrR regulator or LmbU regulator heterologously expressed to activate the cluster.
Streptomyces sp. NBC_00654 (NCBI:txid2975799)
Streptomyces sp. NBC_00878 (NCBI:txid2975854)
Project description:We obtained L. kefiri (JCM5818) and L. kefiranofaciens (JCM6985) from the Japan Collection of Microorganisms (JCM). Bacteria were grown together at two different temperatures of 30C and 37C profiled for transcriptomics, metabolomics, and proteomics.