Project description:Colon cancer onset and progression is strongly associated with the presence, absence, or relative abundances of certain microbial taxa in the gastrointestinal tract. However, specific mechanisms affecting disease susceptibility related to complex bacterial mixtures are poorly understood. We used a multi-omics approach to determine how differences in the complex gut microbiome (GM) influence the metabolome and host transcriptome and ultimately affect susceptibility to adenoma development. Fecal samples collected from Pirc rats harboring two distinct complex GMs were analyzed using ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). We identified putative metabolite profiles that predicted future disease severity from samples collected prior to observable disease onset. Transcriptome analyses performed after disease onset on normal epithelium and tumor tissues suggests that the GM also alters the host transcriptome. Integrated pathway (IP) analyses of the metabolome and transcriptome based on putatively identified metabolic features indicate that bile acid biosynthesis was enriched in rats with high tumors (GM:F344) along with increased fatty acid metabolism and mucin biosynthesis. These data emphasize the utility of using untargeted metabolomics to identify metabolites for revealing signatures of susceptibility and resistance.
Project description:Investigating alterations the intestinal microbiome in a diet induced obesity (DIO) rat model after fecal transplant from rats, which underwent Roux-Y-Gastric-Bypass surgery (RYGB). The microbiomes of the RYGB-donor rats, the DIO rats, and DIO rats after receiving the fecal transplant from the RYGB rats. As controls lean rats as well as lean, RYGB and DIO rats after antibiotics treatment were used.
Project description:A rapid ex vivo microbiome assay and metaproteomics approach was used for rapid evaluation of the cultivability of bio-banked live microbiota, which shows minimal detrimental influences of long-term freezing in deoxygenated glycerol buffer on the cultivability of fecal microbiota.
Project description:5 human fecal gut samples, collected and prepared for standard MudPIT data collection from healthy volunteers, searched with the ComPIL database. x3 replicates each
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Background: More than 100 million Americans are living with metabolic syndrome, increasing their propensity to develop heart disease– the leading cause of death worldwide. A major contributing factor to this epidemic is caloric excess, often a result of consuming low cost, high calorie fast food. Several recent seminal studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that novel microbial metabolites originating postprandially after fast food consumption may contribute to cardiometabolic disease progression. Methods: To test this hypothesis, we gave conventionally raised or antibiotic-treated mice a single oral gavage of a fast food slurry or a control rodent chow diet slurry and sacrificed the mice four hours later. Here, we coupled untargeted metabolomics in portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites. Results: We successfully identified several metabolites that were enriched in portal blood, increased by fast food feeding, and essentially absent in antibiotic-treated mice. Strikingly, just four hours post-gavage, we found that fast food consumption resulted in rapid reorganization of the gut microbial community structure and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on a non-antibiotic ablated gut microbial community. Conclusions: Collectively, these data suggest that single fast food meal is sufficient to reshape the gut microbial community yielding a unique signature of food-derived microbial metabolites. Future studies are warranted to determine if these metabolites are causally linked to cardiometabolic disease.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:To study the effect of alterations in microbial density on the host, conventional C57Bl6 mice were treated with polymyxin B, ciprofloxacin, vancomycin, clindamycin, or ampicillin for 4 weeks. These antibiotic regimens result in a differential reduction in fecal microbial density. RNA-seq of whole tissue from the proximal colon was performed on the antibiotic treated mice, germ free controls, and non-antibiotic treated controls to interrogate transcriptional changes in the host.