Project description:Beneficial microbial symbionts are often horizontally acquired by their animal hosts from environmental sources, requiring the symbionts to complete a lifestyle transition from free-living in the environment to association with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates on host mucosa. Extensive work has previously been conducted to isolate the critical factors controlling V. fischeri biofilm formation, yet much remains unknown regarding the full breadth of the biofilm-associated regulon. Here, we probed in vitro models of biofilm formation using transcriptomics, to identify novel regulatory pathways active within biofilms of the V. fischeri type strain ES114. Through comparing the gene-sets which became differentially regulated in multiple biofilm models, we discovered a shared set of 232 genes which demonstrated similar patterns in expression relative to uninduced controls. These genes contained representatives of multiple exopolysaccharide loci, genes involved in flagellar motility, and a diverse collection of other genes. Follow-up analysis suggested that these transcriptomic changes reflected true phenotypic effects, including changes in motility and cyclic-di-GMP production in biofilm-induced backgrounds. Beyond characterizing the shared biofilm response, we additionally profiled the regulatory activity of the sensor kinase RscS. This sensor kinase has previously been characterized to function as a phospho-donor within an established biofilm-inducing phospho-relay, yet our data suggests that RscS moonlights in at least one other phospho-relay that integrates downstream signaling from a homolog of the Vibrio cholerae response regulator VpsR, without a need for its established signaling partners. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation, while revealing new regulatory pathways branching from previously characterized signaling networks.
Project description:Metabolic signature of HepaRG cells exposed to ethanol and tumor necrosis factor alpha to study ethanol-induced hepatotoxicity by LC-MS-based untargeted metabolomics.
Dataset contains .mzML files originating from an LC-QTOF (6530 for metabolomics & 6560 for lipidomics). HepaRG samples were exposed to ethanol, ethanol & TNF-alpha or no ethanol and TNF-alpha (i.e. negative control). In addition, data from extraction blanks and QC pooled samples are available. Both intracellular and extracellular extracts were analyzed on four different platforms (metabolomics in ESI+ and ESI- and lipidomics in ESI+ and ESI-).
Project description:Mass spectrometry imaging (MSI) allows investigating the spatial distribution of chemical compounds directly in biological tissues. As the analytical depth of MSI is limited, MSI needs to be coupled to more sensitive local extraction-based omics approaches to achieve a comprehensive molecular characterization. For this it is important to retain the spatial information provided by MSI for follow-up omics studies. It has been shown that regiospecific MSI data can be used to guide a laser microdissection system (LMD) for ultra-sensitive LC-MS analyses. So far, this combination has required separate and specialized MS instrumentation. Recent advances in dual-source instrumentation, harboring both MALDI and ESI sources, promise state-of-the-art MSI and liquid-based proteomic capabilities on the same MS instrument. In this study, we demonstrate that such an instrument can offer both, fast lipid-based MSI at high mass- and high lateral resolution, and sensitive LC-MS on local protein extracts from the exact same tissue section.
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX.
Project description:The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the V. cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production. Importance: TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike that in V. cholerae. Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts, and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside of its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.
Project description:We profile the transcriptional landscapes associated with acquisition of [ESI+], a prion scaffolded by Snt1, a core component of the Set3C histone deacetylase. We find that acquisition of [ESI+] leads to expression of otherwise silent, heterochromatic loci, proposing a new molecular means by which silent transcriptional states might be reversed.
Project description:Acyl-homoserine lactone (acyl-HSL) quorum sensing was first discovered in Vibrio fischeri where it serves as a key control element of the seven-gene luminescence (lux) operon. Since this initial discovery, other bacteria have been shown to control hundreds of genes by acyl-HSL quorum sensing. Until recently, it has been difficult to examine the global nature of quorum sensing in V. fischeri. However, the complete genome sequence of V. fischeri is now available and this has enabled us to use transcriptomics to identify quorum-sensing regulated genes and to study the quorum-controlled regulon of this bacterium. In this study, we used DNA microarray technology to identify over two-dozen V. fischeri genes regulated by the quorum sensing signal N-3-oxohexanoyl-L-homoserine lactone (3OC6-HSL). Keywords: Comparison of transcriptome profiles
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX. The wild-type parent and an insertional mutant (hnoX-) of the hnoX gene were grown to early log phase in a minimal-salts medium. One half of each culture was treated with 80µM of the NO-generator, DEA-NONOate, and the other half was left untreated as a control. After 30 min, cells from all the cultures were fixed with RNAprotect Bacteria Reagent. Total RNA was isolated, labeled and hybridized to the Custom Vibrio fischeri GeneChip Array (Affymetrix). Three independent experiments were performed on separate days for statistical analysis.