Project description:Background and aims:
Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface.
Methods:
Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions.
Results:
Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs).
Conclusions:
Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities.
Project description:The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei. Keywords: Trypanosoma, VSG, antigenic switching, HDL-resistance
Project description:The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei. Keywords: Trypanosoma, VSG, antigenic switching, HDL-resistance Bloodstream stages of the Lister strain 427 T. b. brucei (MiTat 1.2), expressing VSG221, were used in these studies. Cells were cultured in HMI-9 medium with the addition of heat inactivated fetal bovine serum (FBS) (10%) and Serum Plus (10%). T. b. brucei 427-221 is an antigenically stable line and contains a single copy of the vsg221 gene within the 221 expression site (221ES). At a cell density of approximately 1,000,000 cells/ml, T. b. brucei 427-221 were exposed to various amounts of human HDLs for 24 h in a 6 well plate. Surviving trypanosomes were counted using a hemocytometer then diluted into fresh HMI-9 medium and allowed to recover for 5-14 days. Once the cells had grown to a density of approximately 1,000,000 cells/ml, they were once again incubated with human HDLs. Each round of selection was performed with increasing concentrations of human HDLs and freezer stocks were prepared for each surviving population. Over nine months we conducted eight rounds of human HDL selection, resulting in a population of T. b. brucei that survived incubation with 800 μl of human HDLs (160 lytic U).
Project description:High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the mo-lecular level. During HDL’s journey throughout the body, its functions are mediated through in-teractions with cell surface receptors on different cell types. To characterize and better under-stand the functional interplay between HDL particles and tissue, we analyzed the sur-faceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (au-to-CSC) and HATRIC-based ligand–receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors repre-senting potential HDL-receptor interaction candidates . Since vascular endotheli-al growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the au-to-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 addition-al receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated re-ceptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor ty-rosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.
Project description:Characterization of HDL proteome in patients diagnosed with non-alcoholic fatty liver disease and to evaluate the impact on HDL function.
Project description:We report changes in gene expression in the Burkitt's lymphoma cell line Ramos, treated with high density lipoprotein-like nanoparticles (HDL NPs) for 48 hours, compared to saline (NT) and natural, human HDL treatment
Project description:Long-term high fat feeding leads to hepatic steatosis, dyslipidemia, and a pro-inflammatory state. In a previous study, we observed this dysregulated metabolic phenotype when C57BL/6 mice were fed a high fat diet (HFD) for sixteen weeks. Additionally, a five-fold increase in liver gene expression of serum amyloid A-1 (SAA-1), an acute phase response protein that associates with high density lipoprotein (HDL), was observed. Inflammation induced changes composition may alter HDL functions, including anti-oxidant, anti-inflammatory and reverse cholesterol transport properties. Diet-induced onset and progression of HDL dysfunction is poorly understood. To examine the relationship between high fat diet and HDL dysfunction, we performed a short-term diet study. Four-week high fat feeding caused an increase in total plasma cholesterol compared with mice fed normal control diet (ND). No change in plasma triglycerides or development of hepatic steatosis was observed. These mice did however show evidence for increase in acute phase reactants, with a 3.25-fold increase in SAA-1 expression in liver. Heavy water labelling was used to determine the turnover rates of proteins associated with HDL. High fat diet resulted in increased fractional catabolic rate (HFD vs ND) of several acute phase response proteins involved ininnate immunity , including – Complement C3 (7.06 ± 0.99 vs 5.20 ± 0.56 %/h, p < 0.005), complement factor B (6.17 ± 0.59 vs 5.09 ± 0.87 %/h, p < 0.05), complement Factor H (4.16 ± 0.41 vs 3.56 ± 0.36 %/h, p < 0.05), and Complement factor I (3.50 ± 0.26 vs 2.75 ± 0.14 %/h, p < 0.005). Our findings suggest that early immune response-induced inflammatory remodeling of HDL precedes the diet-induced steatosis and dyslipidemia. Early HDL dysfunction reflected on impaired reverse cholesterol transport likely results in increase in plasma cholesterol in the absence of other lipid abnormalities.
Project description:We performed zero-order chemical cross-linking mass spectrometry experiments on reconstituted discoidal HDL and human HDL to determine the APOA1 orientations in these particles.
Project description:A human plasma sample was subjected to non-denaturing micro 2-DE and a gel area (5 mm X 18 mm) which includes high-density lipoprotein (HDL) was cut into 1 mm X 1 mm squares, then the proteins in the 90 gel pieces were analyzed by in-gel trypsin digestion and nano-LC-MS/MS. Grid-cutting of the gel was employed to; 1) ensure the total analysis of the proteins in the area, 2) standardize the conditions of analysis by LC-MS/MS, 3) reconstruct the protein distribution patterns from the label-free quantification data. Totally 154 proteins (excluding keratins) were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a non-denaturing 2-DE gel and strongly suggested their interactions.
Project description:The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein ((125)I) and in the cholesteryl ester (CE) moiety ([(3)H]). The metabolism of (125)I-/[(3)H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([(3)H]). In contrast, in LDLR(-/-) mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR(-/-) mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR(-/-) mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.