Project description:Since the proliferative capacity of cardiomyocytes is extremely limited in the adult mammalian hearts, the irreversible loss of cardiomyocytes following cardiac injury markedly reduces cardiac function, leading to cardiac remodeling and heart failure. However, the early neonatal mice have a strong ability in cardiomyocyte proliferation and cardiac regeneration after heart damage such as apical resection. Besides of cardiomyocytes, non-myocytes in heart tissue also play important roles in the regeneration process. Previous studies showed that cardiac macrophages, regulatory T cells and CD4+ T cells are all involved in regulating the myocardial regeneration process. However, the roles of other cardiac immune cells in cardiac regeneration remains to be elucidated. B cells is a prominent immune cell in injured heart; here we discovered the indispensable function of cardiac B cells in improving cardiomyocyte proliferation and heart regeneration in neonatal mice.
Project description:The adult mammalian heart has little regenerative capacity after myocardial infarction (MI) while neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI. Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and non-coding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two thirds of each of the mRNAs, lncRNAs and microRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these microRNAs, miR-144-3p, miR-195a-5p, miR-451a and miR-6240 showed evidence of functional conservation in human cardiomyocytes. The sets of mRNAs, miRNAs and lncRNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.
Project description:Background: The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and non-regenerative mouse hearts over a 7-day time period following myocardial infarction. Methods: RNA-Seq, H3K27ac ChIP-Seq and H3K27me3 ChIP-Seq were performed on ventricular samples from regenerative P1 or non-regenerative P8 mouse hearts at +1.5d, +3d and +7d after MI or Sham surgery to assemble the transcriptome, active chromatin and repressed chromatin landscapes during neonatal heart regeneration. Dynamic enhancer landscapes from mouse hearts during cardiac development were analyzed using data from ENCODE. Effects on cardiomyocyte proliferation and cardiac function from selected factors identified in this study were tested using BrdU/EdU pulse-labeling or mouse models coupled with immunohistochemistry and echocardiography. Results: By integrating gene expression profiles with histone marks associated with active or repressed chromatin, we identified transcriptional programs underlying neonatal heart regeneration and the blockade to regeneration in later life. Our results reveal a unique immune response in regenerative hearts and an embryonic cardiogenic gene program that remains active during neonatal heart regeneration. Among the unique immune factors and embryonic genes associated with cardiac regeneration, we identified Ccl24, which encodes a cytokine, and Igf2bp3, which encodes an RNA-binding protein, as previously unrecognized regulators of cardiomyocyte proliferation. Conclusions: Our data provide insights into the molecular basis of neonatal heart regeneration and identify genes that might be modulated to promote heart regeneration.
Project description:Background: The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and non-regenerative mouse hearts over a 7-day time period following myocardial infarction. Methods: RNA-Seq, H3K27ac ChIP-Seq and H3K27me3 ChIP-Seq were performed on ventricular samples from regenerative P1 or non-regenerative P8 mouse hearts at +1.5d, +3d and +7d after MI or Sham surgery to assemble the transcriptome, active chromatin and repressed chromatin landscapes during neonatal heart regeneration. Dynamic enhancer landscapes from mouse hearts during cardiac development were analyzed using data from ENCODE. Effects on cardiomyocyte proliferation and cardiac function from selected factors identified in this study were tested using BrdU/EdU pulse-labeling or mouse models coupled with immunohistochemistry and echocardiography. Results: By integrating gene expression profiles with histone marks associated with active or repressed chromatin, we identified transcriptional programs underlying neonatal heart regeneration and the blockade to regeneration in later life. Our results reveal a unique immune response in regenerative hearts and an embryonic cardiogenic gene program that remains active during neonatal heart regeneration. Among the unique immune factors and embryonic genes associated with cardiac regeneration, we identified Ccl24, which encodes a cytokine, and Igf2bp3, which encodes an RNA-binding protein, as previously unrecognized regulators of cardiomyocyte proliferation. Conclusions: Our data provide insights into the molecular basis of neonatal heart regeneration and identify genes that might be modulated to promote heart regeneration.
Project description:Fibroblasts are activated to repair the heart following injury. Fibroblast activation in the mammalian heart leads to a permanent fibrotic scar that impairs cardiac function. In other organisms, such as zebrafish, cardiac injury is followed by transient fibrosis and scar-free regeneration. The mechanisms that drive scarring versus scar-free regeneration are not well understood. Here, we show that the homeobox-containing transcription factor Prrx1b is required for scar-free regeneration of the zebrafish heart as the loss of Prrx1b results in excessive fibrosis and impaired cardiomyocyte proliferation. Through lineage tracing and single-cell RNA sequencing we find that Prrx1b is activated in epicardial-derived cells where it restricts TGFβ ligand expression and collagen production. Furthermore, through combined in vitro experiments in human fetal epicardial-derived cells and in vivo rescue experiments in zebrafish, we conclude that Prrx1 stimulates Nrg1 expression and promotes cardiomyocyte proliferation. Collectively, these results indicate that Prrx1 is a key transcription factor that balances fibrosis and regeneration in the injured zebrafish heart.
Project description:The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we construct a transcriptional atlas of multiple cardiac cell populations, which enables comparative analyses of the regenerative (neonatal) versus non-regenerative (adult) state for the first time. This work provides a comprehensive transcriptional resource of multiple cardiac cell populations during cardiac development, repair and regeneration. Our findings define a transcriptional program underpinning the neonatal regenerative state and identifies an epigenetic barrier to re-induction of the regenerative program in adult cardiomyocytes.
Project description:The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we performed single cell RNA-sequencing on neonatal hearts at various time points following myocardial infarction, and coupled the results with bulk tissue RNA-sequencing data collected at the same time points. Concomitant single cell ATAC-sequencing exposed underlying dynamics of open chromatin landscapes and regenerative gene regulatory networks of diverse cardiac cell types, and revealed previously unknown mediators of cardiomyocyte proliferation, angiogenesis and fibroblast activation. Together, our data provide a transcriptional basis for neonatal heart regeneration at single cell resolution and suggest new strategies for enhancing cardiac function in response to injury.
Project description:The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we performed single cell RNA-sequencing on neonatal hearts at various time points following myocardial infarction, and coupled the results with bulk tissue RNA-sequencing data collected at the same time points. Concomitant single cell ATAC-sequencing exposed underlying dynamics of open chromatin landscapes and regenerative gene regulatory networks of diverse cardiac cell types, and revealed previously unknown mediators of cardiomyocyte proliferation, angiogenesis and fibroblast activation. Together, our data provide a transcriptional basis for neonatal heart regeneration at single cell resolution and suggest new strategies for enhancing cardiac function in response to injury.