Project description:Exosomes have recently been shown to play a key role in cell-to-cell communication through delivery of various functional content, including microRNAs (miRNAs). We investigated the potential roles of exosomal miRNA derived intrafollicular cells in polycystic ovary syndrome (PCOS). Using microarray profiling, a total of 492 miRNAs and 220 miRNAs were found in follicular fluid-derived exosomes and serum-derived exosomes, respectively, in PCOS and non-PCOS females. By excluding miRNAs existing in serum-derived exosomes, we found 179 miRNAs which were specifically expressed in follicular fluid-derived exosomes both in PCOS and non-PCOS females. Using microarray profiling, a total of 492 miRNAs and 220 miRNAs were found in follicular fluid-derived exosomes and serum-derived exosomes, respectively, in PCOS and non-PCOS females. By excluding miRNAs existing in serum-derived exosomes, we found 179 miRNAs which were specifically expressed in follicular fluid-derived exosomes both in PCOS and non-PCOS females.
Project description:The raw files of the proteomics dataset are N=18 and a brief description of the files is shown below:
AF1 raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 1
AF2.raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 2
AFA1.raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 3
AFA2.raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 4
AFB1.raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 5
AFB2.raw: exosomes derived from Amniotic Fluid-Mesenchymal Stromal cells 6
HL1A.raw: exosomes derived from Hepatocyte like cells 1
HL1B.raw: exosomes derived from Hepatocyte like cells 2
HL2A.raw: exosomes derived from Hepatocyte like cells 3
HL2B.raw: exosomes derived from Hepatocyte like cells 4
HL3A.raw: exosomes derived from Hepatocyte like cells 5
HL3B.raw: exosomes derived from Hepatocyte like cells 6
HPLA1.raw: exosomes derived from Hepatic Progenitor-like cells 1
HPLA2.raw: exosomes derived from Hepatic Progenitor-like cells 2
HPLB1.raw: exosomes derived from Hepatic Progenitor-like cells 3
HPLB2.raw: exosomes derived from Hepatic Progenitor-like cells 4
HPLA.raw: exosomes derived from Hepatic Progenitor-like cells 5
HPLB.raw: exosomes derived from Hepatic Progenitor-like cells 6
Raw files analysis was performed with Proteome Discoverer 1.4 (Thermo) software package, using the Sequest search engine and the Uniprot human (Homo sapiens) reviewed database, downloaded on December 15, 2017, including 20,243 entries. The search was performed using carbamidomethylation of cysteine as static and oxidation of methionine as dynamic modifications. Two missed cleavage sites, a precursor mass tolerance of 10 ppm and fragment mass tolerance of 0.05 Da were allowed. False discovery rate (FDR) validation was based on q value: target FDR : 0.05. Label free quantification was performed by utilizing the precursor ion area values exported from the total ion chromatogram as defined by the Proteome Discoverer v. 1.4.0.288 (Thermo Scientific). Output files from Proteome Discoverer were processed with R programming language for statistical computing (version 4.0.3).
The following comparisons were made: AF vs HL, AF vs HPL and HL vs HPL.
The msf files are N=18 and have the same name as the raw files above.
Project description:Background: Hepatocellular carcinoma (HCC) is a common malignant primary tumor. Camels have high economic and social values, but their potential medical value has not been studied. This study aimed to investigate the effects of thin and normal camel plasma-derived exosomes on HCC. Methods: Plasma was obtained from thin and normal camels, and used to isolate exosomes by ultracentrifugation. The exosomes were then characterized by transmission electron microscopy and Nano particle tracking analyzer. In vivo imaging of nude mice and hematoxylin eosin (HE) staining of liver tissues were used to explore the effects of the exosomes on tumor growth. Finally, the differences of the two exosomes were further analyzed using small RNA sequencing and proteomics. Results: In vivo imaging and HE staining showed that no significant differences were found in fluorescence value and liver tissue morphology between the control mice and the mice treated with the exosomes from thin camels; while the fluorescence value and the live histology changes were alleviated in the mice with the exosomes from normal camels. After sequencing and proteomic analysis, 40 DE-miRNAs (15 down-regulated and 25 up-regulated) and 172 DEPs (77 up-regulated and 95 down-regulated) were identified in the plasma-derived exosomes from normal camels. These identified DE-miRNAs and DEPs were significantly enriched in many signaling pathways. Conclusions: Normal camel plasma-derived exosomes may inhibit the growth of HCC cells through regulating pathways of Ras, Rap1, PI3K-Akt, MAPK, AMPK, and canonical Wnt signaling pathways.
Project description:Exosomes are small RNA and protein containing vesicles that can mediate hetero- and homotypic intercellular communication between normal and malignant cells. Especially, tumor-derived exosomes are believed to mediate reprogramming of the tumor-associated stroma to favor tumor growth and metastasis. In this study we isolated exosomes from three different Ewing’s sarcoma (ES) cell lines by ultracentrifugation. Microarray analysis of ES-derived exosomes and their parental cells was performed to gain insight into the spectrum of transcripts they contain and the functions in which these transcripts might be involved in. In total we analyzed six different samples consisting of three pairs of exosomal and cellular RNA of different Ewing's sarcoma cell lines.
Project description:Exosomes are molecular entities derived from membrane vesicles of endocytic origin secreted by most cell types. These vesicles are implicated in cell-to-cell communication, deliver proteins and mRNA molecules between cells. Recent studies have shown that exosomes are found in body fluids such as saliva, blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluids and breast milk. Exosomes secreted through human saliva contain mRNA may potentially be useful for diagnostic purposes. Although the exact protective mechanism of saliva RNA is a topic of debate, the consensus is that the enrichment of mRNAs in these nano-vesicles in one of the features of the biomarker discoveries. Our aim was to determine if exosomes are present in human saliva and to nano-characterize their transcriptomic content. Exosomes were purified by differential ultracentrifugation, identified by immunoelectron microscopy, flow cytometry and western blot using a CD-63 antibody. Atomic force microscopy studies revealed ultra structural analysis of both size and density of exosomes. Microarray analysis revealed the presence of 590 mRNA core transcripts are relatively stable inside the exosomes, which can be of saliva mRNA biomarkers. Exosomal mRNA stability was determined by detergent lyses with treatment of RNase. Under in vitro conditions fluorescent dye labeled saliva exosomes were able to communicate between human oral keratinocytes studied by using fluorescence microscopy. The RNA from saliva exosomes can transfer their genetic information to human oral keratinocytes and alters gene expression in the new location. Together, these results suggest that saliva is involved in mRNA trafficking via exosomes, and provides a mechanism for cargoing passenger mRNAs. Our findings are consistent with proposal that exosomes can shuttle RNAs between cells and mRNA is protected inside these vesicles may be a possible resource for biomarker discovery. Experiment Overall Design: Human saliva exosomes were purified through differential centrifugation followed by RNA extraction and hybridization on Affymetrix microarrays. We were able to obtain normal human subjects saliva which are pooled and subjected to ultracentrifugation. The protocol was approved by UCLA Institutional review board. 1 ml of saliva exosomes were used to extract RNA followed by two rounds of amplification by Actorus Amp kit. The amplified RNA was biotin labled and hybridized with Affymetrix protocol.
Project description:Limited research has explored the associations between microRNAs (miRNA) and diminished ovarian reserve (DOR). The study aimed to identify differentially expressed miRNAs in follicular fluid exosomes from women with DOR compared to normal ovarian reserve (NOR) and investigate their role in the proliferation and apoptosis of the human ovarian granulosa tumor cell line KGN.
Project description:To detect the differential expressed proteins in bladder cancer(BCa)-derived exosomes, we isolated BCa tissue-derived exosome and paired normal adjacent tissues (NAT)-derived exosomes. The quantitative proteomics were conducted to detect the upregulated proteins in BCa tissue-derived exosomes compared with NAT-derived exosomes.
Project description:To detect the differential expressed proteins in bladder cancer(BCa)-derived exosomes, we isolated BCa cell-derived exosome and normal bladder epithelial cell-derived exosomes. The quantitative proteomics were conducted to detect the upregulated proteins in BCa cell-derived exosomes compared with SV-HUC-1-derived exosomes.