Project description:Identify the differential protein profile in serum and urine of MPS I patients using the TMT technique and verfied by PRM technique.
Project description:Urinary proteins provide valuable insights into renal health, with implications spanning human and domestic animal veterinary medical research. However, the field of marine mammal medicine lacks comprehensive studies on urine protein composition. This research aimed to fill this gap by 1) selecting an optimal search strategy that yields the highest number of protein families in the bottlenose dolphin urine based on post-translational modifications (PTMs), 2) describing the urine proteome of wild bottlenose dolphins (Tursiops truncatus) in the Gulf of the Mexico, USA, considering sex (females vs. males), site (Barataria Bay, LA vs. Sarasota Bay, FL), and comparing with California sea lions (Zalophus californianus). Ten urine samples (Barataria Bay, LA: N= 6; Sarasota Bay, FL: N=4) collected during 2023 catch-and-release heath assessment were proteolytically digested and analyzed using an UltiMate 3000 Nano LC and Fusion Lumos Orbitrap mass spectrometer. A 2-step search strategy, incorporating dehydroalanine formation and semi-trypsin on the list of unassigned spectra, significantly increased the number of identified protein families by an average of 6.2% compared to the 1-step strategy (P < 0.001, t = -8.32). The top 30 proteins in bottlenose dolphin urine were ranked according to an exponentially modified protein abundance index for comparison based on sex, site, and species. There were no significant differences in urine proteins between sexes or sites (padj > 0.05), although there was sperm contribution in two of the male bottlenose dolphin urine samples. Two putative antimicrobial proteins (cathelicidin and lysozyme) were identified and found to be abundant in bottlenose dolphin urine, similar to California sea lions. The study also identified 27 potential markers of acute kidney injury and 12 regulators of kidney stone formation. This study established a reference database of urinary proteins from bottlenose dolphins, aiding future research in monitoring and evaluating renal health in marine mammals.
Project description:To investigate the gene expression in the regulation of neuron differentiation between healthy human control and MPS II. We then performed gene expression profiling analysis using mRNAs of 3 healthy human control iPSC- and 9 MPS II-iPSC-dervied 15 weeks neurons.
Project description:Many veterans live with military grade heavy metal fragments retained in soft tissue. Retained heavy metal fragments may negatively impact health in various organ systems and can manifest as gastrointestinal, neurocognitive, pulmonary and renal disturbances. As such, a better understanding of the long-term effects of retained metals and identification of biomarkers indicative of detrimental health outcomes would benefit clinical decision making. In this study, we analyzed urine microRNAs from rats with military-relevant pure metals implanted in the gastrocnemius muscle for 1, 3, 6, and 12 months. Our results provide potential tissue targets affected by metal exposure and a list of unique or common urine microRNA biomarkers indicative of exposure to one or more metals, highlighting a complex systemic response.
Project description:MicroRNA (miRNA) biomarkers for fragile X syndrome were searched by urine microRNA (miRNA) profiling using deep sequencing. The urine miRNA profile of twin boys who shared the same environment but one had a FXS full mutation and the other carried a premutation allele was compared based on the similar sequence reads. The urine of twin boys showed 28 differentiatially regulated miRNAs when 219 reliable identified miRNAs were compared.
Project description:Horse urine is easily collected and contains molecules readily measurable using mass spectrometry that can be used as biomarkers representative of health, disease or drug tampering. This study aimed at analyzing microliter levels of horse urine to purify, identify and quantify proteins, polar metabolites and non-polar lipids. Urine from a healthy 12 year old quarter horse mare on a diet of grass hay and vitamin/mineral supplements with limited pasture access was collected for serial-omics characterization. The urine was treated with methyl tert-butyl ether (MTBE) and methanol to partition into three distinct layers for protein, non-polar lipid and polar metabolite content from a single liquid-liquid extraction and was repeated two times. Each layer was analyzed by high performance liquid chromatography – high resolution tandem mass spectrometry (LC-MS/MS) to obtain protein sequence and relative protein levels as well as identify and quantify small polar metabolites and lipids. The results show 46 urine proteins, many related to normal kidney function, structural and circulatory proteins as well as 474 small polar metabolites but only 10 lipid molecules. Metabolites were mostly related to urea cycle and ammonia recycling as well as amino acid related pathways, plant diet specific molecules, etc. The few lipids represented triglycerides and phospholipids. These data show a complete mass spectrometry based –omics characterization of equine urine from a single 333 uL mid-stream urine aliquot. The data can be used as a baseline for healthy urine composition and analyses can be used to monitor disease progression, health status, monitor drug use, etc.
Project description:Diagnosis of ovarian cancer at an early stage is the most important determinant of survival. Thus, there is a clear need for novel biomarkers to improve diagnostic and prognostics that may better inform on therapeutic strategies. We have conducted a discovery study using label-free quantitative mass spectrometry (LFQ) to identify potential biomarker candidates in urine from individual ovarian cancer patients. LFQ analyses identified 4394 proteins (16397 peptides) in urine samples (n=20), 23 of which were significantly elevated in the malignant patient group compared to patients with benign disease. To validate these changes, we used Parallel Reaction Monitoring (PRM) to investigate their abundance in an independent cohort (n=20) of patient urine samples. Seven of the ten proteins were significantly enriched in the ovarian cancer patient samples; amongst these were established ovarian cancer markers WFDC2 (HE4) and Mesothelin (MSLN), validating our approach. This is the first application of a LFQ-PRM workflow to identify and validate ovarian cancer-specific biomarkers in urine samples.