Project description:This SuperSeries is composed of the following subset Series: GSE12358: Clostridium beijerinckii NCIMB 8052 wild-type fermentation time course GSE12359: Clostridium beijerinckii BA101 mutant fermentation time course Refer to individual Series
Project description:The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production scale lager beer fermentation. The transcriptome of a lager brewing yeast (Saccharomyces carlsbergensis, syn. of S. pastorianus), was analysed at 12 different time points spanning a production-scale lager beer fermentation. Generally, the average expression rapidly increased and had a maximum value on day 2, then decreased as the sugar got consumed. Especially genes involved in protein and lipid biosynthesis or glycolysis were highly expressed during the beginning of the fermentation. Similarities as well as significant differences in expression profiles could be observed when comparing to a previous transcriptome analysis of a laboratory yeast grown in YPD. The regional distribution of various expression levels on the chromosomes appeared to be random or near-random and no reduction in expression near telomeres was observed. Keywords: time-course
Project description:Interaction proteomics time course over 24h every 4h, looking for novel interactors of the circadian clock and flowering time protein GIGANTEA. Plants expressing 35S:GIGANTEA:3xFlag6His were used, as well as WT plants for a background control.
Project description:To investigate the glucose regulatory system in Saccharomyces cerevisiae, we conducted a time-course in which glucose-depleted wildtype (WT) cells were inoculated into fresh media (SC, 2% glucose). Their subsequent transcriptional output was monitored over a period of five hours by DNA microarrays: samples for gene expression profiling were taken immediately after, as well as 3, 7.5, 15, 30, 60, 110, 150, and 300 minutes after inoculation into fresh medium. Transcripts upregulated are involved in translational processes such as the GO biological processes “ribosome biogenesis” and “ribosome localization”. Transcripts downregulated are enriched for the GO biological processes “cellular respiration” and various metabolism related processes. The time-course was used to verify the physiological relevance of gene expression profiles determined for individual deletions of glucose regulatory system components. Importantly, transcripts up- or downregulated in WT cells upon the addition of glucose are similarly up- or downregulated in deletion mutants that each lack a component of the glucose regulatory system.
Project description:Yeasts are beneficial microorganisms for human society and are utilized for academic and industrial purposes. For academic purposes, S. cerevisiae is a well-investigated model for studying eukaryotic cellular processes. For industrial purposes, S. pastorianus, which has a hybrid genome of S. cerevisiae and S. eubayanus, has been served for lager beer production. During fermentation, S. pastorianus produces ~7% of EtOH, which induces plasma membrane (PM)/cell wall stress in yeast. Therefore, S. pastorianus may experience PM stress and adapt to the self-forming environment during fermentation. However, how yeast adapts to PM stress remains unclear. Here, we investigated the temporal cellular responses of S. cerevisiae and S. pastorianus during adaptation to PM stresses by time-resolved mRNA-seq analysis. Our data showed different transcriptional phenotypes between S. cerevisiae and S. pastorianus during adaptation. The results may reflect the distinct nature of the two yeasts that have evolved in different nutritional environments. The dataset presented here would provide a promising resource for studying the characteristic nature of these differentially domesticated yeasts upon PM stresses.