Project description:Wild indigenous vegetables make considerable contributions to food baskets among subsistence farmers in sub-Saharan Africa. The aim of this study was to evaluate the proximate analysis, mineral composition, vitamin C content, ?-carotene content, and GC-MS profile of crude methanolic extracts of <i>Asystasia mysorensis</i> and <i>Sesamum angustifolia</i>. Crude extracts obtained through sequential extraction using ethyl acetate and methanol were screened for the presence of secondary metabolites. Functional groups present were determined with a Shimadzu FT-IR spectrophotometer, while ?-carotene content and ascorbic acid content were evaluated using a Shimadzu HPLC and Shimadzu UV-VIS spectrophotometer, respectively. Secondary metabolites present in the extracts were determined qualitatively using a Shimadzu GC-MS system equipped with a NIST spectral database. From the results obtained, the two plants could supply the recommended daily requirement for micronutrient and vitamin C content needed for a healthy diet. The total phenolic and flavonoid contents in <i>S. amgustifolia</i> were higher as compared to <i>A. myorensis;</i> hence, their consumption is highly beneficial as some compounds identified in the GC-MS profile have been reported to have medicinal properties. The findings on the mineral and chemical composition, GC-MS profile of <i>A. mysorensis</i> and <i>S. angustifolia</i> indicate that their consumption may provide the recommended nutritional requirements needed for a healthy diet.
Project description:Resorting to a One Strain Many Compounds (OSMAC) approach, the marine Streptomyces sp. BRB081 strain was grown in six different media settings over 1, 2, 3 or 7 days. Extractions of mycelium and broth were conducted separately for each media and cultivation period by sonication using methanol/acetone 1:1 and agitation with ethyl acetate, respectively. All methanol/acetone and ethyl acetate crude extracts were analysed by HPLC-MS/MS and data treatment was performed through GNPS platform using MZmine 2 software. In parallel, the genome was sequenced, assembled and mined to search for biosynthetic gene clusters (BGC) of secondary metabolites using the AntiSMASH 5.0 software. Spectral library search tool allowed the annotation of desferrioxamines, fatty acid amides, diketopiperazines, xanthurenic acid and, remarkably, the cyclic octapeptides surugamides. Molecular network analysis allowed the observation of the surugamides cluster, where surugamide A and the protonated molecule corresponding to the B-E isomers, as well as two potentially new analogues, were detected. Data treatment through MZmine 2 software allowed to distinguish that the largest amount of surugamides was obtained by cultivating BRB081 in SCB medium during 7 days and extraction of culture broth. Using the same data treatment, a chemical barcode was created for easy visualization and comparison of the metabolites produced overtime in all media. By genome mining of BRB081 four regions of biosynthetic gene clusters of secondary metabolites were detected supporting the metabolic data. Cytotoxic evaluation of all crude extracts using MTT assay revealed the highest bioactivity was also observed for extracts obtained in the optimal conditions as those for surugamides production, suggesting these to be the main active compounds herein. This method allowed the identification of compounds in the crude extracts and guided the selection of best conditions for production of bioactive compounds.
Project description:<i>Leonurus cardiaca</i> L. (Lamiaceae) is a perennial herb distributed in Asia and Southeastern Europe and has been used in traditional medicine since antiquity for its role against cardiac and gynecological disorders. The polar extracts obtained from <i>L. cardiaca</i> aerial parts contain several compounds among which alkaloids, iridoids, labdane diterpenes, and phenylethanoid glycosides play a major role in conferring protection against the aforementioned diseases. On the other hand, the antioxidant activities and the enzyme inhibitory properties of these extracts have not yet been deeply studied. On the above, in the present study, crude and purified extracts were prepared from the aerial parts of <i>L. cardiaca</i> and have been chemically characterized by spectrophotometric assays and HPLC-DAD-MS analyses. Notably, the content of twelve secondary metabolites, namely phenolic acids (chlorogenic, caffeic, caffeoylmalic and <i>trans</i>-ferulic acids), flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside), guanidine pseudoalkaloids (leonurine), iridoids (harpagide), diterpenes (forskolin), and triterpenes (ursolic acid), has been determined. Furthermore, the extracts were tested for their antioxidant capabilities (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and ferrous chelating assays) and enzyme inhibitory properties against cholinesterase, tyrosinase, amylase, and glucosidase. The purified extracts contained higher phytochemical content than the crude ones, with caffeoylmalic acid and verbascoside as the most abundant compounds. A linear correlation between total phenolics, radical scavenging activity, and reducing power of extracts has been found. Notably, quercetin, caffeic acid, lavandulifolioside, verbascoside, chlorogenic acid, rutin, and ursolic acid influenced the main variations in the bioactivities found in <i>L. cardiaca</i> extracts. Our findings provide further insights into the chemico-biological traits of <i>L. cardiaca</i> and a scientific basis for the development of nutraceuticals and food supplements.
Project description:Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.
Project description:Vibrio diabolicus A1SM3 strain was isolated from a sediment sample from Manaure Solar Saltern in La Guajira and the produced crude extracts have shown antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human lung cell line. Thus, the aim of this research was to identify the main compound responsible for the biological activity observed and to systematically study how each carbon and nitrogen source in the growth media, and variation of the salinity, affect its production. For the characterization of the bioactive metabolites, 15 fractions obtained from Vibrio diabolicus A1SM3 crude extract were analyzed by HPLC-MS/MS and their activity was established. The bioactive fractions were dereplicated with Antibase and Marinlit databases, which combined with nuclear magnetic resonance (NMR) spectra and fragmentation by MS/MS, led to the identification of 2,2-di(3-indolyl)-3-indolone (isotrisindoline), an indole-derivative antibiotic, previously isolated from marine organisms. The influence of the variations of the culture media in isotrisindoline production was established by molecular network and MZmine showing that the media containing starch and peptone at 7% NaCl was the best culture media to produce it. Also, polyhydroxybutyrates (PHB) identification was established by MS/MS mainly in casamino acids media, contributing to the first report on PHB production by this strain.
Project description:Camptothecin (CPT) has strong antitumor activity and is used as an anticancer therapeutic agent. To better understand and decipher the pathway of CPT biosynthesis in Camptotheca acuminata, the main purpose here was focused on creating an effective extraction strategy for a rich intermediate metabolite profile. In the present study, a 70% aqueous acetonitrile was verified as an optimal extraction solvent for microwave-assisted extraction (MAE) of metabolites by spiking experiments. Based on multi-objective optimization, the best extraction conditions of a solid-liquid ratio of 1:20, microwave power of 230 W, and a time of 4 min were achieved using a full factorial 3? experimental design. Crude extracts obtained from the shoot apex of C. acuminata using MAE have been qualitatively profiled by high-performance liquid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry (HPLC-LTQ-Orbitrap-MS/MS) and a HPLC triple quadrupole-MS (HPLC-TSQ-MS) analysis was conducted for their metabolite content in different tissues. CPT, and ten related metabolites and their isomers, including tryptamine, loganic acid, secologanic acid, strictosidinic acid, strictosamide, strictosamide epoxide, strictosamide diol, strictosamide ketolactam, pumiloside, and deoxypumiloside, were detected and tentatively identified. Scanning electron microscopy (SEM) imaging of the shoot apex demonstrated that severe cell disruption was evident after intensified extraction processes. The study showed the difference of metabolite profiles and the enhancement of metabolite content after microwave-pretreated techniques, and the established MAE procedure is an effective methodology to preserve valuable metabolite compounds for analysis.
Project description:Plant extracts are a potential source of new compounds for nematode control and may be an excellent alternative for the control gastrointestinal nematodes that are resistant to conventional anthelmintics. However, research involving natural products is a complex process. The main challenge is the identification of bioactive compounds. Online analytical techniques with universal detectors, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), together with metabolomics could enable the fast, accurate evaluation of a massive amount of data, constituting a viable option for the identification of active compounds in plant extracts. This study focused on the evaluation of the ovicidal activity of ethanol extracts from 17 plants collected from the Pantanal wetland in the state of Mato Grosso do Sul, Brazil, against eggs of Haemonchus placei using the egg hatchability test. The ethanol extracts were obtained using accelerated solvent extraction. The data on ovicidal activity, mass spectrometry and metabolomics were evaluated using HPLC-DAD-MS, partial least squares regression analysis (PLS-DA) and a correlation map (univariate correlation analyses) to detect compounds that have a positive correlation with biological activity. Among the ten metabolites with the best correlation coefficients, six were phenylpropanoids, two were triterpene saponins, one was a brevipolide, and one was a flavonoid. Combinations of metabolites with high ovicidal action were also identified, such as phenylpropanoids combined with the triterpene saponins and the flavonoid, flavonoids combined with iridoid and phenylpropanoids, and saponins combined with phenylpropanoid. The positive correlation between classes of compounds in plants belonging to different genera and biological activity (as previously identified in the literature) reinforces the robustness of the statistical data and demonstrates the efficacy of this method for the selection of bioactive compounds without the need for isolation and reevaluation. The proposed method also enables the determination of synergism among the classes, which would be impracticable using traditional methods. The present investigation demonstrates that the metabolomic technique was efficient at detecting secondary metabolites with ovicidal activity against H. placei. Thus, the use of metabolomics can be a tool to accelerate and simplify bioprospecting research with plant extracts in veterinary parasitology.
Project description:Cyanobacteria have been shown to produce a number of bioactive compounds, including toxins. Some bioactive compounds obtained from a marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) have been recognized as drug leads; one of these compounds is aplysiatoxin. We have isolated various aplysiatoxin derivatives from a M. producens sample obtained from the Okinawan coastal area. The frozen sample was extracted with organic solvents. The ethyl acetate layer was obtained from the crude extracts via liquid-liquid partitioning, then separated by HPLC using a reversed-phase column. Finally, 1.1 mg of the compound was isolated. The chemical structure of the isolated compound was elucidated with spectroscopic methods, using HR-MS and 1D and 2D NMR techniques, and was revealed to be oscillatoxin I, a new member of the aplysiatoxin family. Oscillatoxin I showed cytotoxicity against the L1210 mouse lymphoma cell line and diatom growth-inhibition activity against the marine diatom Nitzschia amabilis.
Project description:Rhazya stricta Decne. (Apocynaceae) contains a large number of terpenoid indole alkaloids (TIAs). This study focused on the composition of alkaloids obtained from transformed hairy root cultures of R. stricta employing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). In the UPLC-MS analyses, a total of 20 TIAs were identified from crude extracts. Eburenine and vincanine were the main alkaloids followed by polar glucoalkaloids, strictosidine lactam and strictosidine. Secodine-type alkaloids, tetrahydrosecodinol, tetrahydro- and dihydrosecodine were detected too. The occurrence of tetrahydrosecodinol was confirmed for the first time for R. stricta. Furthermore, two isomers of yohimbine, serpentine and vallesiachotamine were identified. The study shows that a characteristic pattern of biosynthetically related TIAs can be monitored in Rhazya hairy root crude extract by this chromatographic method.