Project description:Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.
Project description:MotivationModeling genome-scale metabolic networks (GEMs) helps understand metabolic fluxes in cells at a specific state under defined environmental conditions or perturbations. Elementary flux modes (EFMs) are powerful tools for simplifying complex metabolic networks into smaller, more manageable pathways. However, the enumeration of all EFMs, especially within GEMs, poses significant challenges due to computational complexity. Additionally, traditional EFM approaches often fail to capture essential aspects of metabolism, such as co-factor balancing and by-product generation. The previously developed Minimum Network Enrichment Analysis (MiNEA) method addresses these limitations by enumerating alternative minimal networks for given biomass building blocks and metabolic tasks. MiNEA facilitates a deeper understanding of metabolic task flexibility and context-specific metabolic routes by integrating condition-specific transcriptomics, proteomics, and metabolomics data. This approach offers significant improvements in the analysis of metabolic pathways, providing more comprehensive insights into cellular metabolism.ResultsHere, I present MiNEApy, a Python package reimplementation of MiNEA, which computes minimal networks and performs enrichment analysis. I demonstrate the application of MiNEApy on both a small-scale and a genome-scale model of the bacterium Escherichia coli, showcasing its ability to conduct minimal network enrichment analysis using minimal networks and context-specific data.Availability and implementationMiNEApy can be accessed at: https://github.com/vpandey-om/mineapy.
Project description:BackgroundTwo important challenges in the analysis of molecular biology information are data (multi-omic information) integration and the detection of patterns across large scale molecular networks and sequences. They are are actually coupled beause the integration of omic information may provide better means to detect multi-omic patterns that could reveal multi-scale or emerging properties at the phenotype levels.ResultsHere we address the problem of integrating various types of molecular information (a large collection of gene expression and sequence data, codon usage and protein abundances) to analyse the E.coli metabolic response to treatments at the whole network level. Our algorithm, MORA (Multi-omic relations adjacency) is able to detect patterns which may represent metabolic network motifs at pathway and supra pathway levels which could hint at some functional role. We provide a description and insights on the algorithm by testing it on a large database of responses to antibiotics. Along with the algorithm MORA, a novel model for the analysis of oscillating multi-omics has been proposed. Interestingly, the resulting analysis suggests that some motifs reveal recurring oscillating or position variation patterns on multi-omics metabolic networks. Our framework, implemented in R, provides effective and friendly means to design intervention scenarios on real data. By analysing how multi-omics data build up multi-scale phenotypes, the software allows to compare and test metabolic models, design new pathways or redesign existing metabolic pathways and validate in silico metabolic models using nearby species.ConclusionsThe integration of multi-omic data reveals that E.coli multi-omic metabolic networks contain position dependent and recurring patterns which could provide clues of long range correlations in the bacterial genome.
Project description:Elucidating gene regulatory networks (GRNs) is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. In this study, we integrated publicly available co-expression networks derived from more than 6,000 RNA-seq samples, 283 protein-DNA interaction assays, and 16 million of SNPs used to identify expression quantitative loci (eQTL), to construct TF-target networks. In total, we analyzed ~4.6M interactions to generate four distinct types of TF-target networks: co-expression, protein-DNA interaction (PDI), trans-expression quantitative loci (trans-eQTL), and cis-eQTL combined with PDIs. To improve the functional annotation of TFs based on its target genes, we implemented three different strategies to integrate these four types of networks. We subsequently evaluated the effectiveness of our method through loss-of function mutant and random networks. The multi-network integration allowed us to identify transcriptional regulators of hormone-, metabolic- and development-related processes. Finally, using the topological properties of the fully integrated network, we identified potentially functional redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems.
Project description:To better understand dynamic disease processes, integrated multi-omic methods are needed, yet comparing different types of omic data remains difficult. Integrative solutions benefit experimenters by eliminating potential biases that come with single omic analysis. We have developed the methods needed to explore whether a relationship exists between co-expression network models built from transcriptomic and proteomic data types, and whether this relationship can be used to improve the disease signature discovery process. A naïve, correlation based method is utilized for comparison. Using publicly available infectious disease time series data, we analyzed the related co-expression structure of the transcriptome and proteome in response to SARS-CoV infection in mice. Transcript and peptide expression data was filtered using quality scores and subset by taking the intersection on mapped Entrez IDs. Using this data set, independent co-expression networks were built. The networks were integrated by constructing a bipartite module graph based on module member overlap, module summary correlation, and correlation to phenotypes of interest. Compared to the module level results, the naïve approach is hindered by a lack of correlation across data types, less significant enrichment results, and little functional overlap across data types. Our module graph approach avoids these problems, resulting in an integrated omic signature of disease progression, which allows prioritization across data types for down-stream experiment planning. Integrated modules exhibited related functional enrichments and could suggest novel interactions in response to infection. These disease and platform-independent methods can be used to realize the full potential of multi-omic network signatures. The data (experiment SM001) are publically available through the NIAID Systems Virology (https://www.systemsvirology.org) and PNNL (http://omics.pnl.gov) web portals. Phenotype data is found in the supplementary information. The ProCoNA package is available as part of Bioconductor 2.13.
Project description:Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC50) and supralethal (LC90) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC90. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.
Project description:Although clinical and laboratory data have long been used to guide medical practice, this information is rarely integrated with multi-omic data to identify endotypes. We present Merged Affinity Network Association Clustering (MANAclust), a coding-free, automated pipeline enabling integration of categorical and numeric data spanning clinical and multi-omic profiles for unsupervised clustering to identify disease subsets. Using simulations and real-world data from The Cancer Genome Atlas, we demonstrate that MANAclust's feature selection algorithms are accurate and outperform competitors. We also apply MANAclust to a clinically and multi-omically phenotyped asthma cohort. MANAclust identifies clinically and molecularly distinct clusters, including heterogeneous groups of "healthy controls" and viral and allergy-driven subsets of asthmatic subjects. We also find that subjects with similar clinical presentations have disparate molecular profiles, highlighting the need for additional testing to uncover asthma endotypes. This work facilitates data-driven personalized medicine through integration of clinical parameters with multi-omics. MANAclust is freely available at https://bitbucket.org/scottyler892/manaclust/src/master/.
Project description:MotivationThe increasing availability of multi-omic data has enabled the discovery of disease biomarkers in different scales. Understanding the functional interaction between multi-omic biomarkers is becoming increasingly important due to its great potential for providing insights of the underlying molecular mechanism.ResultsLeveraging multiple biological network databases, we integrated the relationship between single nucleotide polymorphisms (SNPs), genes/proteins and metabolites, and developed an R package Multi-omic Network Explorer Tool (MoNET) for multi-omic network analysis. This new tool enables users to not only track down the interaction of SNPs/genes with metabolome level, but also trace back for the potential risk variants/regulators given altered genes/metabolites. MoNET is expected to advance our understanding of the multi-omic findings by unveiling their transomic interactions and is likely to generate new hypotheses for further validation.Availability and implementationThe MoNET package is freely available on https://github.com/JW-Yan/MONET.Supplementary informationSupplementary data are available at Bioinformatics online.