ABSTRACT: Backup GC-MS analysis of hexanic phase obtained from liquid liquid partition with methanol:water (9:1) of AcOEt extracts of Aspergillus in sugar cane incubation.
Project description:Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism Parageobacillus thermoglucosidasius. We engineered P. thermoglucosidasius to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.
Project description:Analysis of sugar-cane secondary metabolites during incubation of Aspergillus novoparasiticus (strain Y174) by LC-DAD-HRMS/MS in the positive mode.
Project description:Hemoglobin (Hb) released from red blood cells during hemolysis is a trigger of oxidative vascular damage with endothelial cells being a primary target. The Hb and heme scavenger proteins haptoglobin (Hp) and hemopexin (Hx) have been characterized as a sequential defense system with Hp as the primary protector and Hx as a backup when all Hp is depleted during more severe or prolonged hemolysis. The paradigm of sequential protection by the two scavengers is based on observational patient data proposed by Mueller-Eberhardt. In this study we present a mechanistic rationale for these clinical observations using a novel in vitro model of Hb triggered endothelial damage. We identified oxyHb(Fe2+) transformation to ferric Hb(Fe3+), free heme transfer from ferric Hb(Fe3+) to lipoprotein and subsequent oxidative reactions in the lipophilic phase. The accumulation of toxic lipid peroxidation products liberated during oxidation reactions lead to endothelial damage characterized by a specific gene expression pattern, reduced cellular ATP and monolayer disintegration. Quantitative analysis of key biochemical and functional parameters allowed us to precisely define the mechanisms and concentrations required for Hp and Hx to prevent this toxicity. In the case of Hp we defined an exponential relationship between Hp availability relative to oxyHb(Fe2+) and related protective activity. This exponential relationship demonstrates that large Hp quantities are required to prevent Hb toxicity. In contrast, the linear relationship between Hx concentration and protective activity allows for significant protection by the backup scavenger during conditions of large excess of free oxyHb(Fe2+) that occurs when all Hp is consumed. The diverse protective function of Hp and Hx in this model can be explained by the different target specificities of the two proteins.
Project description:This SuperSeries is composed of the following subset Series: GSE24983: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_WT-GC] GSE24984: Response of A549 cells treated with Aspergillus fumigatus [WT-GC_vs_PrtT-GC] GSE24985: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_PrtT-CF] Refer to individual Series
Project description:Microarray analysis was used to compare gene expression of Aspergillus fumigatus under two different sporulation temperatures, 17oC and 32oC, with an emphasis on genes encoding known or putative allergens of the fungus. The objective of the study was to investigate whether allergenic potencies of A. fumigatus spores produced under different sporulation temperatures would be influenced by temperature-dependent transcriptional regulation of allergenicity genes. Non-sporulating liquid culture of Aspergillus fumigatus was harvested and divided equally onto two sets of potato dextrose agar plates, one set for incubation at 17oC, the other for incubation at 32oC. After 48 hours of incubation, RNA was harvested from both sets of sporulating cultures, reverse-transcribed into dye-coupled cDNA and hybridized onto microarrays for analysis of gene expression. For each experiment, extracted RNA from the two cultures were hybridized onto two dye-swap technical replicate arrays. A total of three separate experiments were conducted for biological triplicates, for a total of six hybridizations.
Project description:Purpose: NGS was used to determine if a distinct transcriptomic profile is observed among the experimental mice fed four different dietary components. Methods: We carried out RNA-Seq analysis of ileum tissue from 6 weeks male mice ad libitum fed for 10 weeks a high liquid sugar (23% (w/v)) or/and high fat (60% Kcal from fat) diet. The combined effect of sugar drink and high fat diet (HF-Sugar) was compared with sugar drink only (NF-Sugar), or high fat diet only (HF), or control diet that was plain water and normal fat diet (NF). Results: RNA-Seq revealed sample-specific clusters that included genes responding to each experimental diet. We found only addition of sugar drink to high fat group (HF-Sugar) not NF-Sugar and HF, there was a significant enrichment in biological functions relating to Inflammatory/Immune Responses, especially including dendritic cell (DC) and T cell related signaling pathway. Conclusions: Taken together, our data demonstrate that sugar drink synergistically promotes and exacerbates inflammatory responses driven by the high fat diet.
Project description:We report a study conducted to investigate the variation on gene expression of the pathogenic fungus Aspergillus fumigatus upon co-cultivation with the pathogenic bacterium Pseudomonas aeruginosa. The study was conducted by investigating the gene expression variation at different time points (45, 90 and 180 minutes after co-incubation). As control, we used data obtained by cultivating the fungus either without bacteria, or with heat-inactivated Pseudomonas.
Project description:Columbia (Col) seeds were sown on half-strength Murashige and Skoog (MS) medium, supplemented with 1% sucrose and 0.8% agar and grown vertically in culture room conditions. The 5-d-old homogenous seedlings were washed five times with sterile water and lastly with liquid half strength MS medium without sugar to remove residual exogenous sugar. In order to deplete internal sugars seedlings were grown in sugar free liquid half strength MS medium for 24 h in dark. Thereafter, the seedlings were treated with half-strength MS medium containing 0% G, 0% G + 1 uM BAP, 3% G, and 3% G + 1 uM BAP for 3 h in dark. RNA was extracted and microarray analysis was performed. Please note: G stands for glucose and BAP stands for 6-Benzylaminopurine (cytokinin)
Project description:Interventions: Nutrition intervention group 1:Perioperative oral general sugar clear liquid diet (200 ml/bag) at time points;Nutrition intervention group 2:Perioperative Oral Complex Carbohydrate Purified Liquid Food (200ml/bag);Blank control group 3:Fasting from food and water 12 hours before surgery and 24 hours after surgery
Primary outcome(s): Intestinal barrier function;Semiquantitative typing of intestinal flora;Gut flora 16sRNA assay;albumin;Length of stay in hospital;Hospitalisation costs
Study Design: Parallel
Project description:The influence of selected pentose catabolic pathway (PCP) deletion strains on growth of plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of the fungus Aspergillus niger in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains grown on wheat bran (WB) and sugar beet pulp (SBP) were evaluated. Proteomics samples were digested with trypsin then analyzed by LC-MS/MS with fractionation. Metabolomics samples were derivitized using a modified Fiehn protocol and analyzed by GC-MS with FAME added for retention alignment. Proteomics data was searched with MS-GF+ using PNNL's DMS Processing pipeline.