Proteomics

Dataset Information

0

An Evolutionarily Conserved Regulatory Pathway of Muscle Mitochondrial Network Organization


ABSTRACT: Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial network-type separately from contractile fiber-type remain unclear. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated independently. Proteomic analyses of indirect flight, jump, and leg muscles together with muscles misexpressing known fiber-type specification factor salm identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization separately from contractile type, mitochondrial content, and mitochondrial size through an evolutionarily conserved pathway involving cut, salm, and H15.

INSTRUMENT(S): Orbitrap Fusion Lumos

ORGANISM(S): Drosophila Melanogaster (ncbitaxon:7227)

SUBMITTER: Brian Glancy  

PROVIDER: MSV000088173 | MassIVE |

SECONDARY ACCESSION(S): PXD028878

REPOSITORIES: MassIVE

Similar Datasets

2020-10-03 | GSE158957 | GEO
2016-09-03 | E-GEOD-72581 | biostudies-arrayexpress
2016-09-03 | GSE72581 | GEO
2014-12-23 | E-GEOD-63707 | biostudies-arrayexpress
2022-01-12 | PXD030896 | JPOST Repository
2015-12-23 | E-GEOD-64523 | biostudies-arrayexpress
2015-02-05 | PXD001641 | Pride
2014-12-23 | GSE63707 | GEO
2005-09-17 | GSE3310 | GEO
2023-07-06 | GSE185154 | GEO