Project description:High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
Project description:This work demonstrates the utility of high-throughput nanoLC-MS and label-free quantification (LFQ) for sample-limited bottom-up proteomics analysis, including single-cell proteomics (SCP). Conditions were optimized on a 50 μm internal diameter (I.D.) column operated at 100 nL/min in the direct injection workflow to balance method sensitivity and sample throughput from 24 to 72 samples/day. Multiple data acquisition strategies were also evaluated for proteome coverage, including data-dependent acquisition (DDA), wide-window acquisition (WWA), and wide-window data-independent acquisition (WW-DIA). Analyzing 250 pg HeLa digest with a 10-min LC gradient (72 samples/day) provided >900, >1,800, and >3,000 protein group identifications for DDA, WWA, and WW-DIA, respectively. Total method cycle time was further reduced from 20 to 14.4 min (100 samples/day) by employing a trap-and-elute workflow, enabling 70% mass spectrometer utilization. The method was applied to library-free DIA analysis of single-cell samples, yielding >1,700 protein groups identified. In conclusion, this study provides a high-sensitivity, high-throughput nanoLC-MS configuration for sample-limited proteomics.
Project description:The use of narrow bore LC capillaries operated at ultralow flow rates coupled with mass spectrometry provides a desirable convergence of figures of merit to support high-performance LC-MS/MS analysis. This configuration provides a viable means to achieve in-depth protein sequence coverage while maintaining a high rate of data production. Here we explore potential performance improvements afforded by use of 25 ?m × 100 cm columns fabricated with 5 ?m diameter reversed phase particles and integrated electrospray emitter tips. These columns achieve a separation peak capacity of ?750 in a 600-min gradient, with average chromatographic peak widths of less than 1 min. At room temperature, a pressure drop of only ?1500 psi is sufficient to maintain an effluent flow rate of ?10 nL/min. Using mouse embryonic stem cells as a model for complex mammalian proteomes, we reproducibly identify over 4000 proteins across duplicate 600 min LC-MS/MS analyses.
Project description:Melatonin (MEL) and its chemical precursor N-acetylserotonin (NAS) are believed to be potential biomarkers for sleep-related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC-MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1?×?100 ?mm, 3.5?µm) or on a polyimide-coated, fused-silica capillary self-packed with 17?cm AquaC18 (3?µm, 125?Å). Quantitation was done using the SRM transitions m/z 233???174 and m/z 219???160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7-1165? pg/mL, LC: 1165-116,500 ?pg/mL) and for NAS (nanoflow LC: 11.0-1095 ?pg/mL).
Project description:The analysis of proteins by RPLC commonly involves the use of TFA as an ion-pairing agent, even though it forms adducts and suppresses sensitivity. The presence of adducts can complicate protein molecular weight assignment especially when protein isoforms coelute as in the case of histones. To mitigate the complicating effects of TFA adducts in protein LC-MS, we have optimized TFA-free methods for protein separation. Protein standards and histones were used to evaluate TFA-free separations using capillary (0.3?mm id) and nanoscale (0.1?mm id) C(8) columns with the ion-pairing agents, formic acid or acetic acid. The optimized method was then used to examine the applicability of the approach for histone characterization in human cancer cell lines and primary tumor cells from chronic lymphocytic leukemia patients.
Project description:Novel mass spectrometry (MS)-based proteomic tools with extremely high sensitivity and high peak capacity are required for comprehensive characterization of protein molecules in mass-limited samples. We reported a nanoRPLC-CZE-MS/MS system for deep bottom-up proteomics of low micrograms of human cell samples in previous work. In this work, we improved the sensitivity of the nanoRPLC-CZE-MS/MS system drastically via employing bovine serum albumin (BSA)-treated sample vials, improving the nanoRPLC fraction collection procedure, and using a short capillary for fast CZE separation. The improved nanoRPLC-CZE produced a peak capacity of 8500 for peptide separation. The improved system identified 6500 proteins from a MCF7 proteome digest starting with only 500 ng of peptides using a Q-Exactive HF mass spectrometer. The system produced a comparable number of protein identifications (IDs) to our previous system and the two-dimensional (2D) nanoRPLC-MS/MS system developed by Mann's group with 10-fold and 4-fold less sample consumption, respectively. We coupled the single-spot solid phase sample preparation (SP3) method to the improved nanoRPLC-CZE-MS/MS for bottom-up proteomics of 5000 HEK293T cells, resulting in 3689 protein IDs with the consumption of a peptide amount that corresponded to only roughly 1000 cells.