Project description:The human Adeno-Associated Virus serotype 2 (WT AAV2) is a common non-pathological virus and its recombinant form (rAAV) is widely used as gene therapy vector. However, it has been shown that WT AAV2 and recombinant AAV display significantly different characteristics, especially regarding infection rate, with a near perfect infectivity and better encapsidation rate of WT AAV2. Even though rAAVs are routinely produced in the Baculovirus/Sf9 cell system, WT AAV2 has never been produced in this context. To understand the infectivity and encapsidation rate differences between WT AAV2 and rAAV, we tried to produce WT AAV2 in baculovirus/Sf9 cells system hypothesizing that the WT AAV2 may be considered as a normal recombinant AAV transgene. Through our attempts to produce WT AAV2 in Baculovirus/Sf9, we found that WT AAV2 p5 promoter, which controls the expression of large Rep proteins in mammalian cells, was active in this system. p5 promoter activity in the baculovirus/Sf9 cell system led to the expression of Rep78 that finally excises WT AAV2 genome from the baculovirus genome during the earliest phase of baculovirus stock production. The p5 promoter expression kinetics and the specific strand RNA-Seq analysis of the WT AAV2, rAAV Rep2/Cap2 cassettes in the baculovirus context was performed. We demonstrate that the WT AAV2 native promoters, p5, p19 and p40 are all active and lead to the expression of different proteins and peptides. In addition, this study demonstrates that the baculovirus brings at least some of the helper functions needed in the AAV replication/life cycle.
Project description:The advent of on-line multidimensional liquid chromatography-mass spectrometry has significantly impacted proteomic analyses of complex biological fluids such as plasma. However, there is general agreement that additional advances to enhance the peak capacity of such platforms are required to enhance the accuracy and coverage of proteome maps of such fluids. Here, we describe the combination of strong-cation-exchange and reversed-phase liquid chromatographies with ion mobility and mass spectrometry as a means of characterizing the complex mixture of proteins associated with the human plasma proteome. The increase in separation capacity associated with inclusion of the ion mobility separation leads to generation of one of the most extensive proteome maps to date. The map is generated by analyzing plasma samples of five healthy humans; we report a preliminary identification of 9087 proteins from 37,842 unique peptide assignments. An analysis of expected false-positive rates leads to a high-confidence identification of 2928 proteins. The results are catalogued in a fashion that includes positions and intensities of assigned features observed in the datasets as well as pertinent identification information such as protein accession number, mass, and homology score/confidence indicators. Comparisons of the assigned features reported here with other datasets shows substantial agreement with respect to the first several hundred entries; there is far less agreement associated with detection of lower abundance components.
Project description:Highly specialized cells are fundamental for proper functioning of complex organs. Variations in cell-type specific gene expression and protein composition have been linked to a variety of diseases. Although single cell technologies have emerged as valuable tools to address this cellular heterogeneity, a majority of these workflows lack sufficient in situ resolution for functional classification of cells and are associated with extremely long analysis time, especially when it comes to in situ proteomics. In addition, lack of understanding of single cell dynamics within their native environment limits our ability to explore the altered physiology in disease development. This limitation is particularly relevant in the mammalian brain, where different cell types perform unique functions and exhibit varying sensitivities to insults. The hippocampus, a brain region crucial for learning and memory, is of particular interest due to its obvious involvement in various neurological disorders. Here, we present a combination of experimental and data integration approaches for investigation of cellular heterogeneity and functional disposition within the mouse brain hippocampus using MALDI Imaging mass spectrometry (MALDI-IMS) and shotgun proteomics (LC-MS/MS) coupled with laser-capture microdissection (LCM) along with spatial transcriptomics. Within the dentate gyrus granule cells we identified two proteomically distinct cellular subpopulations that are characterized by a substantial number of discriminative proteins. These cellular clusters contribute to the overall functionality of the dentate gyrus by regulating redox homeostasis, mitochondrial organization, RNA processing, and microtubule organization. Importantly, most of the identified proteins matched their transcripts, verifying the in situ protein identification and supporting their functional analyses. By combining high-throughput spatial proteomics with transcriptomics, our approach enables reliable near-single-cell scale identification of proteins and profiling of inter-cellular heterogeneity within similar cell-types in tissues. This methodology has the potential to be applied to different biological conditions and tissues, providing a deeper understanding of cellular subpopulations in situ.
Project description:Recombinant adeno-associated viruses (rAAVs) are the predominant gene therapy vector. Several rAAV vectored therapies have achieved regulatory approval, but production of sufficient rAAV quantities remains difficult. The AAV Rep proteins, which are essential for genome replication and packaging, represent a promising engineering target for improvement of rAAV production but remain underexplored. To gain a comprehensive understanding of the Rep proteins and their mutational landscape, we assayed the effects of all 39,297 possible single codon mutations to the AAV2 rep gene on AAV2 production. Most beneficial variants are not observed in nature, indicating that improved production may require synthetic mutations. Additionally, the effects of AAV2 rep mutations were largely consistent across capsid serotypes, suggesting that production benefits are capsid independent. Our results provide a detailed sequence-to-function map that enhances our understanding of Rep protein function and lays the groundwork for Rep engineering and enhancement of large scale gene therapy production.
Project description:Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy. With the skyrocketing rate of AAV research and the prevalence of many new engineered capsids being investigated in preclinical and clinical trials, capsid characterization plays a vital role in serotype confirmation and quality control. Further, peptide mapping the capsid proteins might inevitably be a future requirement by regulatory agencies since it is a critical step in good manufacturing practice (GMP) for biotherapeutic characterization. To overcome many challenges that traditional methods like SDS-PAGE and western blots carry, liquid chromatography and mass spectrometry (LC-MS) allows high resolution and sensitivity with great accuracy in characterizing the AAV capsid proteins. Our optimized LC-MS method provides quick sample preparation, a fast and high-throughput 4-min run, and high sensitivity, which allows for very efficient characterization of wild-type and engineered capsids. This study also reports the usage of LC-MS/MS peptide mapping of AAV capsid proteins to determine the most accessible lysine residues targeted by chemical modifications. Our detailed protocols are anticipated to promote the development and discovery of AAV variants with high accuracy and efficiency.
Project description:To better examine the molecular mechanisms behind the virus infection, we conducted a correlation analysis of RNA-Seq and quantitative iTRAQ-LC-MS/MS in TuMV-infected and in healthy Chinese cabbage leaves.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular and molecular pathways. The goals of this study are to compare NGS-derived Cere-120 treated SMG transcriptome profile (RNA-seq) to the AAV2-GFP and Non-IR SMGs