Project description:High throughput phenotyping is important to bridge the gap between genotype and phenotype. The methods used to describe the phenotype therefore should be robust to measurement errors, relatively stable over time, and most importantly, provide a reliable estimate of elementary phenotypic components. In this study, we use functional-structural modeling to evaluate quantitative phenotypic metrics used to describe root architecture to determine how they fit these criteria. Our results show that phenes such as root number, root diameter, and lateral root branching density are stable, reliable measures and are not affected by imaging method or plane. Metrics aggregating multiple phenes such as total length, total volume, convex hull volume, and bushiness index estimate different subsets of the constituent phenes; they however do not provide any information regarding the underlying phene states. Estimates of phene aggregates are not unique representations of underlying constituent phenes: multiple phenotypes having phenes in different states could have similar aggregate metrics. Root growth angle is an important phene which is susceptible to measurement errors when 2D projection methods are used. Metrics that aggregate phenes which are complex functions of root growth angle and other phenes are also subject to measurement errors when 2D projection methods are used. These results support the hypothesis that estimates of phenes are more useful than metrics aggregating multiple phenes for phenotyping root architecture. We propose that these concepts are broadly applicable in phenotyping and phenomics.
Project description:An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.
Project description:Knowledge of intracellular location can provide important insights into the function of proteins and their respective organelles, and there is interest in combining classical subcellular fractionation with quantitative mass spectrometry to create global cellular maps. To evaluate mass spectrometric approaches specifically for this application, we analyzed rat liver differential centrifugation and Nycodenz density gradient subcellular fractions by tandem mass tag (TMT) isobaric labeling with reporter ion measurement at the MS2 and MS3 level and with two different label-free peak integration approaches, MS1 and data independent acquisition (DIA). TMT-MS2 provided the greatest proteome coverage, but ratio compression from contaminating background ions resulted in a narrower accurate dynamic range compared to TMT-MS3, MS1, and DIA, which were similar. Using a protein clustering approach to evaluate data quality by assignment of reference proteins to their correct compartments, all methods performed well, with isobaric labeling approaches providing the highest quality localization. Finally, TMT-MS2 gave the lowest percentage of missing quantifiable data when analyzing orthogonal fractionation methods containing overlapping proteomes. In summary, despite inaccuracies resulting from ratio compression, data obtained by TMT-MS2 assigned protein localization as well as other methods but achieved the highest proteome coverage with the lowest proportion of missing values.