Project description:Transcriptional profiling of R. sphaeroides Δirr under iron limitation (-Fe) compared to control R. sphaeroides Δirr under normal growth conditions (+Fe). Two strain experiment under normal iron (+Fe) and iron limitation (-Fe) conditions. 6 Biological replicates, independently grown and harvested at OD660=0,4; 1-3 pooled in replicate 1, 4-6 pooled in replicate 2
Project description:Diatoms, which are responsible for up to 40% of the 45 to 50 billion metric tons of organic carbon production each year in the sea, are particularly sensitive to Fe stress. Here we describe the transcriptional response of the pennate diatom Phaeodactylum tricornutum to Fe limitation using a partial genome microarray based on EST and genome sequence data. Processes carried out by components rich in Fe, such as photosynthesis, mitochondrial electron transport and nitrate assimilation are down-regulated to cope with the reduced cellular iron quota. This retrenchment is compensated by nitrogen (N) and carbon (C) reallocation from protein and storage carbohydrate degradation, adaptations to chlorophyll biosynthesis and pigment metabolism, removal of excess electron s by mitochondrial alternative oxidase (AOX), augmented Fe-independent oxidative stress responses, and sensitized iron capture mechanisms. Keywords: Marine phytoplankton, pinnate diatom
Project description:Transcriptional profiling of R. sphaeroides Δirr under iron limitation (-Fe) compared to control R. sphaeroides Δirr under normal growth conditions (+Fe).
Project description:Diatoms, which are responsible for up to 40% of the 45 to 50 billion metric tons of organic carbon production each year in the sea, are particularly sensitive to Fe stress. Here we describe the transcriptional response of the pennate diatom Phaeodactylum tricornutum to Fe limitation using a partial genome microarray based on EST and genome sequence data. Processes carried out by components rich in Fe, such as photosynthesis, mitochondrial electron transport and nitrate assimilation are down-regulated to cope with the reduced cellular iron quota. This retrenchment is compensated by nitrogen (N) and carbon (C) reallocation from protein and storage carbohydrate degradation, adaptations to chlorophyll biosynthesis and pigment metabolism, removal of excess electron s by mitochondrial alternative oxidase (AOX), augmented Fe-independent oxidative stress responses, and sensitized iron capture mechanisms. Keywords: Marine phytoplankton, pinnate diatom Wild-type Phaeodactylum tricornutum was grown under Fe replete (10,000 nM) and Fe limiting (5nM) conditions. Partial genome gene expression analysis of iron-inducible genes was conducted using a two-color competitive hybridization microarray.
Project description:Projected responses of ocean net primary productivity (NPP) to climate change are highly uncertain. The climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific plays a crucial role, but field measurements are insufficient to provide suitable constraints. Here we quantify two decades of nutrient limitation in the Equatorial Pacific with satellite observations. Using field nutrient addition experiments, proteomics, and above-water hyperspectral radiometry, we demonstrate that physiological responses of phytoplankton to iron limitation led to ~3-fold increases in chlorophyll-normalized phytoplankton fluorescence. Extension to the >18-year satellite fluorescence record showed that Equatorial Pacific iron limitation was robust to changes in physical forcing through multiple El Niño–Southern Oscillation cycles, despite coherent fluctuations in limitation strength. In contrast, these iron limitation changes were overestimated 2-fold by a state-of-the-art climate model. Such synoptic constraints provide a powerful new approach for benchmarking the realism of model NPP projections to climate changes.
Project description:Diatoms are single celled photosynthetic bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (< 3 days, phase I) and chronic (> 5 days, phase II) iron limitation. While at phase I no changes in physiological parameters were observed, molecular markers for iron starvation, such as ISIP and flavodoxin, were highly upregulated. At phase II, down regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron limited cells similarly oxidized the GSH pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between maximal growth rate and susceptibility to oxidative stress as a possible key determinant in the response of diatoms to iron quota in the marine environment.
Project description:Iron (Fe) is an important growth limiting factor for diatoms and its availability is further restricted by changes in the carbonate chemistry of the water. We investigated the physiological attributes and transcriptional profiles of the diatom Thalassiosira pseudonana grown on a day:night cycle under different CO2/pH and iron concentrations, that in combination generated available iron (Fe’) concentrations of 1160, 233, 58 and 12 pM. We found the light-dark conditions to be the main driver of transcriptional patterns, followed by Fe’ concentration and CO2 availability, respectively. At the highest Fe’ (1160 pM), 55% of the transcribed genes were differentially expressed between day and night, whereas at the lowest Fe’ (12 pM), only 28% of the transcribed genes displayed comparable patterns. While Fe limitation disrupts the diel transcriptional patterns for genes in most central metabolism pathways, the diel periodicity of light- signaling molecules and glycolytic genes, was relatively robust in response to reduced Fe’. Moreover, we identified a non-canonical splicing of transcripts encoding triose-phosphate isomerase, a key-enzyme of glycolysis, generating transcript isoforms that would encode proteins with and without an active site. Transcripts that encoded an active enzyme maintained a diel pattern at low Fe’, while transcripts that encoded the non-active enzyme lost the diel pattern. This work illustrates the interplay between nutrient limitation and transcriptional regulation over the diel cycle. Considering that future ocean conditions will reduce the availability of Fe in many parts of the oceans, our work identifies some of the regulatory mechanisms that may shape future ecological communities.
Project description:We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation. Differential expression was observed for genes in iron acquisition and incorporation operons. SfuC in particular was 16 times higher in iron-limited cultures and encodes a periplasmic iron-binding protein.
Project description:Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation Thalassiosira pseudonana and 4 open-ocean diatoms were subjected to iron limitation or short-term oxidative stress (hydrogen peroxide). mRNA profiles of T. pseudonana (CCMP1335), Thalassiosira oceanica (CCMP1005), Amphora coffeaeformis (CCMP1405), Chaetoceros sp. (CCMP199), and Cylindrotheca closterium (CCMP340).