Project description:Childhood obesity traces its roots to the parental lifestyle and eating habits. Familial clustering of obesity indicates that children’s feeding behavior is a result of a complex interplay between cultural inheritance, genetics, and epigenetics. In the current study, we asked a question if epigenetic factors, such as ancestral diet, could program offspring feeding behavior in a fruit fly model. Here we show that ancestral caloric overload produces a generational shift in the offspring’s feeding behavior, with a concomitant alteration in activity, triglycerides, and brain mitochondrial density. Mechanistically, we find the generational changes to be associated with alterations in brain mitochondrial proteome and miRNAs. The findings identify ancestral nutrition as a critical factor in the generational programming of feeding behavior.
Project description:The choroid plexus is an important source of trophic factors for the developing and mature brain. Recently we described the expression and production of mature insulin in epithelial cells of the choroid plexus, and how its secretion can be modulated by serotonin through Htr2c, a metabotropic receptor that signals via Gq. To understand the function of this choroid plexus-derived insulin, here we describe a way to genetically target epithelial cells of the choroid plexus using a viral vector. With this, we modulated insulin expression and evaluated behavior. Insulin overexpression in the choroid plexus of wild type mice led to an inhibition in feeding, whereas insulin knockdown in choroid plexus of Ins1-/-Ins2fl/fl mice promoted discrete increases in food intake, especially after a period of fasting. Insulin overexpression in choroid plexus induced roust transcriptomic changes in the hypothalamus, most of which related to axonal growth and synapse-related processes. Finally, activation of Gq signaling in insulin-overexpressing choroid plexuses led to acute AKT phosphorylation in neurons of the arcuate nucleus, suggesting a direct action, through the CSF, of choroid plexus-derived insulin on the hypothalamus. Taken together our findings prove that the choroid plexus is a relevant source of insulin in the central nervous system, with physiological implications in feeding behavior. We believe that choroid plexus-derived insulin has to be taken into consideration in future work pertaining insulin actions in the brain.
Project description:Anopheles gambiae mosquitoes exhibit an endophilic, nocturnal blood feeding behavior. Despite the importance of light as a regulator of malaria transmission, our knowledge on the molecular interactions between environmental cues, the circadian oscillators and the host seeking and feeding systems of the Anopheles mosquitoes is limited. In the present study, we show that the blood feeding behavior of mosquitoes is under circadian control and can be modulated by light pulses, both in a clock dependent and in an independent manner. Short light pulses (~2-5 min) in the dark phase can inhibit the blood-feeding propensity of mosquitoes momentarily in a clock independent manner, while longer durations of light stimulation (~1-2 h) can induce a phase advance in blood-feeding propensity in a clock dependent manner. The temporary feeding inhibition after short light pulses may reflect a masking effect of light, an unknown mechanism which is known to superimpose on the true circadian regulation. Nonetheless, the shorter light pulses resulted in the differential regulation of a variety of genes including those implicated in the circadian control, suggesting that light induced masking effects also involve clock components. Light pulses (both short and longer) also regulated genes implicated in feeding as well as different physiological processes like metabolism, transport, immunity and protease digestions. RNAi-mediated gene silencing assays of the light pulse regulated circadian factors timeless, cryptochrome and three takeout homologues significantly up-regulated the mosquito's blood-feeding propensity. In contrast, gene silencing of light pulse regulated olfactory factors down-regulated the mosquito's propensity to Our study suggests that the mosquitoâs feeding behavior is under circadian control. Long and short light pulses can induce inhibition of blood-feeding through circadian and unknown mechanisms, respectively, that involve chemosensory factors. A series of assays were performed to assess transcriptomic changes in mosquitoes upon light stimulation and blood feeding in order to assess relationships between photic stimulation and modulation of feeding behavior.
Project description:Psilocybin, and other serotonergic psychedelics, have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to ‘addictive-like’ behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.
Project description:In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila , we find that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.
Project description:Anopheles gambiae mosquitoes exhibit an endophilic, nocturnal blood feeding behavior. Despite the importance of light as a regulator of malaria transmission, our knowledge on the molecular interactions between environmental cues, the circadian oscillators and the host seeking and feeding systems of the Anopheles mosquitoes is limited. In the present study, we show that the blood feeding behavior of mosquitoes is under circadian control and can be modulated by light pulses, both in a clock dependent and in an independent manner. Short light pulses (~2-5 min) in the dark phase can inhibit the blood-feeding propensity of mosquitoes momentarily in a clock independent manner, while longer durations of light stimulation (~1-2 h) can induce a phase advance in blood-feeding propensity in a clock dependent manner. The temporary feeding inhibition after short light pulses may reflect a masking effect of light, an unknown mechanism which is known to superimpose on the true circadian regulation. Nonetheless, the shorter light pulses resulted in the differential regulation of a variety of genes including those implicated in the circadian control, suggesting that light induced masking effects also involve clock components. Light pulses (both short and longer) also regulated genes implicated in feeding as well as different physiological processes like metabolism, transport, immunity and protease digestions. RNAi-mediated gene silencing assays of the light pulse regulated circadian factors timeless, cryptochrome and three takeout homologues significantly up-regulated the mosquito's blood-feeding propensity. In contrast, gene silencing of light pulse regulated olfactory factors down-regulated the mosquito's propensity to Our study suggests that the mosquito’s feeding behavior is under circadian control. Long and short light pulses can induce inhibition of blood-feeding through circadian and unknown mechanisms, respectively, that involve chemosensory factors.
Project description:In obesity, misalignment of feeding time with the light/dark environment results in disruption of peripheral circadian clocks. Conversely, restricting feeding to the active period mitigates metabolic syndrome through mechanisms that remain unknown. Here we show that adipocyte thermogenesis is essential for the healthful metabolic response to time restricted feeding. Genetic enhancement of adipocyte thermogenesis through ablation of Zfp423 attenuates obesity caused by circadian mistimed high fat diet feeding through a mechanism involving creatine metabolism. Circadian control of adipocyte creatine metabolism underlies timing of diet-induced thermogenesis, and enhancement of adipocyte circadian rhythms through overexpression of the clock activator Bmal1 ameliorates metabolic complications during diet induced obesity. These findings establish creatine mediated diet-induced thermogenesis as a bioenergetic mechanism driving metabolic benefits during time-restricted feeding.
Project description:Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.