Metabolomics

Dataset Information

0

Metabolome patterns identify active dechlorination in bioaugmentation consortium SDC-9


ABSTRACT:

Ultra-high performance liquid chromatography-high resolution mass spectrometry (UPHLC-HRMS) is used to discover and monitor single or sets of biomarkers informing about metabolic processes of interest. The technique can detect thousands of molecules (i.e., metabolites) in a single instrument run and provide a measurement of the global metabolome, which could be a fingerprint of activity. Despite the power of this approach, technical challenges have hindered the effective use of metabolomics to interrogate microbial communities implicated in the removal of priority contaminants. Herein, our efforts to circumvent these challenges and apply this emerging systems biology technique to synthetic microbiomes relevant for contaminant biodegradation will be discussed. Chlorinated ethenes impact many contaminated sites, and detoxification can be achieved by organohalide-respiring bacteria, a process currently assessed by quantitative gene-centric tools (e.g., quantitative PCR).


This laboratory study monitored the metabolome of the SDC-9 bioaugmentation consortium during cis-1,2-dichloroethene conversion to vinyl chloride and nontoxic ethene. Untargeted metabolomics using an UPLC-Orbitrap mass spectrometer and performed on SDC-9 cultures at different stages of the reductive dechlorination process detected ~10,000 spectral features per sample arising from water-soluble molecules with both known and unknown structures. Multivariate statistical techniques including partial least squares-discriminate analysis (PLS-DA) identified patterns of measurable spectral features (peak patterns) that correlated with dechlorination (in)activity. ANOVA analyses identified 18 potential biomarkers of reductive dechlorination activity. Statistical clustering of samples with these 18 features predicted dechlorination activity more reliably than clustering of samples based only on chlorinated ethene concentration and Dhc 16S rRNA gene abundance data, highlighting the value of metabolomic workflows as an innovative site assessment and bioremediation monitoring tool.

INSTRUMENT(S): Liquid Chromatography MS -

SUBMITTER: Amanda May 

PROVIDER: MTBLS5219 | MetaboLights | 2022-09-16

REPOSITORIES: MetaboLights

Similar Datasets

2020-05-29 | GSE151409 | GEO
| PRJNA781289 | ENA
2021-04-30 | GSE114138 | GEO
2022-02-08 | GSE193464 | GEO
| PRJNA771375 | ENA
| PRJNA672869 | ENA
2015-06-26 | E-GEOD-69184 | biostudies-arrayexpress
2016-05-13 | E-GEOD-74927 | biostudies-arrayexpress
2014-07-04 | GSE56187 | GEO
2021-10-17 | MSV000088243 | MassIVE