Metabolomics

Dataset Information

0

A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection


ABSTRACT: The potential for commensal microorganisms indigenous to a host (the microbiome or microbiota) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics systems approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimuriums lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

ORGANISM(S): Mouse Mus Musculus

TISSUE(S): Feces

DISEASE(S): Bacterial Infection

SUBMITTER: Thomas Metz  

PROVIDER: ST000083 | MetabolomicsWorkbench | Wed Jun 25 00:00:00 BST 2014

REPOSITORIES: MetabolomicsWorkbench

Similar Datasets

2014-06-24 | MTBLS96 | MetaboLights
2020-02-18 | E-MTAB-7503 | biostudies-arrayexpress
2022-03-12 | GSE198199 | GEO
2012-03-19 | E-GEOD-31075 | biostudies-arrayexpress
2011-12-31 | E-GEOD-31394 | biostudies-arrayexpress
2014-10-24 | E-GEOD-60874 | biostudies-arrayexpress
2023-07-08 | GSE149418 | GEO
2014-12-19 | GSE52589 | GEO
2024-01-08 | GSE252070 | GEO
2024-01-08 | GSE252069 | GEO