Project description:BackgroundThe polyene macrocyclic compound amphotericin B (AmB) is an important antifungal antibiotic for the clinical treatment of invasive fungal infections. To rationally guide the improvement of AmB production in the main producing strain Streptomyces nodosus, comparative metabolomics analysis was performed to investigate the intracellular metabolic changes in wild-type S. nodosus ZJB20140315 with low-yield AmB production and mutant S. nodosus ZJB2016050 with high-yield AmB production, the latter of which reached industrial criteria on a pilot scale.ResultsTo investigate the relationship of intracellular metabolites, 7758 metabolites were identified in mutant S. nodosus and wildtype S. nodosus via LC-MS. Through analysis of metabolism, the level of 26 key metabolites that involved in carbon metabolism, fatty acids metabolism, amino acids metabolism, purine metabolism, folate biosynthesis and one carbon pool by folate were much higher in mutant S. nodosus. The enrichment of relevant metabolic pathways by gene overexpression strategy confirmed that one carbon pool by folate was the key metabolic pathway. Meanwhile, a recombinant strain with gene metH (methionine synthase) overexpressed showed 5.03 g/L AmB production within 120 h fermentation, which is 26.4% higher than that of the mutant strain.ConclusionsThese results demonstrated that comparative metabolomics analysis was an effective approach for the improvement of AmB production and could be applied for other industrially or clinically important compounds as well.
Project description:Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared, at two timepoints, the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. The immune response was assessed using the TruCulture system with a Null stimulation. samples were tested by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC MS/MS) for a total of 696 metabolites.
Project description:Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases, accompanied by global alterations in metabolic profiles. In the past 10 years, over hundreds of metabolomics studies have been conducted to unravel metabolic changes in AD, which provides insight into the identification of potential biomarkers for diagnosis, treatment, and prognostic assessment. However, since different species may lead to systemic abnormalities in metabolomic profiles, it is urgently needed to perform a comparative metabolomics analysis between AD animal models and human patients. In this study, we integrated 78 metabolic profiles from public literatures, including 11 metabolomics studies in different AD mouse models and 67 metabolomics studies from AD patients. Metabolites and enrichment analysis were further conducted to reveal key metabolic pathways and metabolites in AD. We totally identified 14 key metabolites and 16 pathways that are both differentially significant in AD mouse models and patients. Moreover, we built a metabolite-target network to predict potential protein markers in AD. Finally, we validated HER2 and NDF2 as key protein markers in APP/PS1 mice. Overall, this study provides a comprehensive strategy for AD metabolomics research, contributing to understanding the pathological mechanism of AD.
Project description:It is known that changes in bacterial metabolism can contribute to the modulation of bacterial susceptibility to antibiotics. Understanding how bacterial metabolism is impacted by antibiotics may improve our understanding of the antibiotic mechanism of actions from a metabolic perspective. Here, we utilized a mass spectrometry-based targeted metabolic profiling technique to characterize the metabolome of a pair of isogenic methicillin-susceptible and resistant Staphylococcus aureus (MSSA and MRSA) strains RN450 and 450M treated with the sublethal dose of three antibiotics from different classes (β-lactams, aminoglycosides and quinolones). These treatments induced a set of metabolic alterations after 6 h of co-incubation with antibiotics. Similar and divergent metabolic perturbations were observed from different antibiotics to the tested strains. Different metabolic response from MSSA and MRSA to the same antibiotics was also detected in the study and indicated the potentially different stress response mechanism in MSSA and MRSA metabolism. This work has shown that a complex set of metabolic changes can be induced by a variety of antibiotics, and the comparative metabolomics strategy can provide a good understanding of this process from a metabolic perspective.
Project description:Many citrus varieties are hybridized to improve their quality and to overcome the effects of climate change. However, there is limited information on the effect of the chemical profiles of hybrid varieties on their quality. In this study, we analyzed 10 citrus varieties and evaluated the correlation with their general characteristics and antioxidant activities. Chemical profiles, including the contents of sugars, organic acid compounds, flavonoids, limonoids, and carotenoids, which are related to taste, color, and health benefits, were significantly different depending on the citrus varieties, leading to different antioxidant capacities and general quality parameters. Based on these data, the correlations were investigated, and 10 citrus varieties were clustered into four groups-Changshou kumquat and Jeramon (cluster I); Setoka (cluster II-1); Natsumi, Satsuma mandarin, and Navel orange (cluster II-2); Kanpei, Tamnaneunbong, Saybyeolbong, and Shiranui (cluster II-3). Moreover, a metabolomic pathway was proposed. Although citrus peels were not analyzed and the sensory and functional qualities of the citrus varieties were not investigated in this study, our results are useful to better understand the relationship between citrus quality and metabolite profiles, which can provide basic information for the development and improvement of new citrus varieties.
Project description:In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research.
Project description:Actinidia (kiwifruit) is known as 'the king of vitamin C' due to its rich ascorbic acid (AsA) concentration, which makes it an important model for studying the regulation of AsA metabolism. Herein, transcriptomic analysis was employed to identify candidate genes that regulate AsA synthesis in Actinidia species with 100-fold variations in fruit AsA content (A. latifolia and A. rufa). Approximately 1.16 billion high-quality reads were generated, and an average of 66.68% of the data was uniquely aligned against the reference genome. AsA-associated DEGs that predominately respond to abiotic signals, and secondary metabolic pathways were identified. The key candidate genes, for instance, GDP-L-galactose phosphorylase-3 (GGP3), were explored according to integrated analysis of the weighted gene co-expression network and L-galactose pathway. Transgenic kiwifruit plants were generated, and the leaves of GGP3 (OE-GGP3) overexpressing lines had AsA contents 2.0- to 6.4-fold higher than those of the wild type. Transcriptomic analysis of transgenic kiwifruit lines was further implemented to identify 20 potential downstream target genes and understand GGP3-regulated cellular processes. As a result, two transcription factors (AcESE3 and AcMYBR) were selected to carry out yeast two-hybrid and BiFC assays, which verified that there were obvious AcESE3-AcMYBR and AcESE3-AcGGP3 protein-protein interactions. This study provides insight into the mechanism of AsA synthesis and provides candidate factors and genes involved in AsA accumulation in kiwifruit.
Project description:The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine-asparagine-polyamine module and the shikimic acid-tyrosine-tryptamine-phenylalanine-flavonoid module. As the core member of the second module, shikimic acid's function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research.
Project description:Increasing evidence suggests Alzheimer's disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline.
Project description:The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process. Affymetrix microarrays were performed on fetal liver cells (both TER119- progenitor cells and TER119+ erythroblast cells) from E14.5 wildtype and Klf3 KO mice. Four wildtype TER119- replicates, four Klf3 KO TER119- replicates, four wildtype TER119+ replicates, three Klf3 KO TER119+ replicates. All are from E14.5 fetal liver.