Project description:The effects of liver X receptor (LXR) agonists on plasma lipid homeostasis, especially triglyceride metabolism are controversial. Here we examined the effect of long-term activation of LXR on plasma lipid homeostasis in wild-type C57BL/6 and LDL receptor deficient (LDLR-/-) mice given the LXR agonist T0901317 for 4 weeks. LXR agonist treatment of wild-type mice decreased plasma total triglycerides by 35% due to a significant reduction of plasma VLDL triglycerides. In contrast, in LDLR-/- mice T0901317 treatment increased plasma total cholesterol and triglycerides. An increase in the level of smaller VLDL particles was also observed in T0901317-treated LDLR-/- mice. The changes in circulating lipoprotein profiles in response to T0901317 treatment in these two animal models reflect the balance between synthesis and secretion on the one hand and lipolysis and clearance on the other. In both models there was both an increase in VLDL production and secretion and in an increase in LPL production and activity in T0901317-treated animals. In wild-type mice lipolysis and clearance predominates, while in the absence of the LDLR, which plays a major role in the clearance of apoB-containing lipoproteins, the increased output predominates. The generation of elevated levels of small VLDL particles due to increased lipolysis may represent an additional risk factor for atherosclerosis.
Project description:Mouse models are frequently used to study mechanisms of human diseases. Recently, we observed a spontaneous bimodal variation in liver weight in C57BL/6JOlaHsd mice fed a semisynthetic diet. We now characterized the spontaneous variation in liver weight and its relationship with parameters of hepatic lipid and bile acid (BA) metabolism. In male C57BL/6JOlaHsd mice fed AIN-93G from birth to postnatal day (PN)70, we measured plasma BA, lipids, Very low-density lipoprotein (VLDL)-triglyceride (TG) secretion, and hepatic mRNA expression patterns. Mice were sacrificed at PN21, PN42, PN63 and PN70. Liver weight distribution was bimodal at PN70. Mice could be subdivided into two nonoverlapping groups based on liver weight: 0.6 SD 0.1 g (approximately one-third of mice, small liver; SL), and 1.0 SD 0.1 g (normal liver; NL; p<0.05). Liver histology showed a higher steatosis grade, inflammation score, more mitotic figures and more fibrosis in the SL versus the NL group. Plasma BA concentration was 14-fold higher in SL (p<0.001). VLDL-TG secretion rate was lower in SL mice, both absolutely (-66%, p<0.001) and upon correction for liver weight (-44%, p<0.001). Mice that would later have the SL-phenotype showed lower food efficiency ratios during PN21-28, suggesting the cause of the SL phenotype is present at weaning (PN21). Our data show that approximately one-third of C57BL/6JOlaHsd mice fed semisynthetic diet develop spontaneous liver disease with aberrant histology and parameters of hepatic lipid, bile acid and lipoprotein metabolism. Study designs involving this mouse strain on semisynthetic diets need to take the SL phenotype into account. Plasma lipids may serve as markers for the identification of the SL phenotype.
Project description:For decades, mouse and other rodents have been used for the study of oxidative or related studies such as the effect of fluoride. It is known that rodents normally synthesize their own vitamin C (VC) due to the presence of a key enzyme in ascorbic acid synthesis, l-gulono-lactone-γ-oxidase (Gulo), while humans do not have the capacity of VC synthesis due to the deletion of most parts of the GULO gene. The spontaneous fracture (sfx) mouse recently emerged as a model for study of VC deficiency. We investigated the effect of fluoride on liver cells from wild type Balb/c and sfx mice. We found that activities of SOD, GPx, and CAT were reduced in both wild type and sfx mice; however, the amount of reduction in the sfx cells is more than that in Balb/c cells. In addition, while both cells increased MDA, the increase in the sfx cells is greater than that in Balb/c cells. Gene networks of Sod, Gpx, and Cat in the liver of humans and mice are also different. Our study suggests that reaction to fluoride in vitamin C deficient mice might be different from that of wild type mice.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:TRIB1 is a GWAS locus associated with plasma cholesterol and triglycerides (TG) levels. In mice, liver-specific overexpression of TRIB1 lowers plasma lipid levels. Berberine (BBR) is a natural lipid lowering drug that reduces plasma LDL-cholesterol (LDL-C), total cholesterol (TC) and TG in hyperlipidemic patients and in mice by mechanisms involving upregulation of hepatic LDL receptor (LDLR). Here, we demonstrated that BBR treatment reduced plasma LDL-C, TC and TG in LDLR wildtype (WT) mice fed a high fat and high cholesterol diet and it only lowered TG in LDLR WT mice fed a normal chow diet. In hypercholesterolemic LDLR deficient mice (Ldlr-/-), BBR treatment reduced plasma TG levels by 51% compared to the vehicle control without affecting plasma cholesterol levels. Hepatic gene expression analysis revealed that Trib1 mRNA levels were significantly elevated by BBR treatment in all three mouse models and increases of Trib1 mRNA expression were associated with reduced expression of lipogenic genes including Cebpa, Acc1 and Scd1. In vitro studies further demonstrate that BBR induces TRIB1 mRNA expression by a transcriptional mechanism via ERK signaling pathway. These new findings warrant future in vivo studies to determine the causal role of Trib1 in BBR-mediated TG lowering independent of LDLR regulation.
Project description:OBJECTIVE:Type 1 diabetes results from autoimmune destruction of beta-cells in the pancreas. Our objective is to reconstitute a glucose-responsive system in the liver to regulate hepatic insulin production for improving glycemic control in type 1 diabetes. METHODS:We have cloned the glucose-responsive element (GRE) from the promoter of acetyl-CoA carboxylase (ACC), an enzyme that catalyzes the rate-limiting step in fatty acid synthesis in the liver in response to glucose. To increase the amplitude of glucose induction, we quadruplicated the GRE DNA by gene duplication. The resulting GRE multimer (4×GRE) was tested for its ability to drive rat proinsulin cDNA expression in hepatocytes and insulin-deficient diabetic mice. RESULTS:We showed that this GRE multimer-directed glucose-responsive system produced insulin in hepatocytes in a glucose-dependent manner. When delivered into the liver by adenovirus-mediated gene transfer, this glucose-responsive insulin production system was able to reverse hyperglycemia to a normal range without causing hypoglycemia after glucose challenge or overnight fasting. Insulin vector-treated diabetic mice exhibited significantly improved blood glucose profiles in response to glucose tolerance, correlating with insulin production in the liver. We recapitulated these findings in streptozotocin-induced diabetic CD1 mice and autoimmune non-obese diabetic mice. CONCLUSION:Our data characterized the GRE motif from the ACC promoter as a potent glucose-responsive element, and provided proof-of-concept that the 4×GRE-mediated hepatic insulin production is capable of correcting insulin deficiency and improving glycemic control in type 1 diabetes.
Project description:Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. RTT is characterized by having apparently normal development until 6-18 months, when a progressive decline in motor and language functions begins and breathing abnormalities and seizures present. Here we present the first proteomic analysis in a RTT mouse model. Examining whole cortex tissue in symptomatic males (Mecp2Jae/y) and wild-type littermates, we have identified 465 proteins significantly altered. Pathway analysis identified biological pathways ubiquitous to multiple cell types as well as cell type specific pathways, underscoring the contributions of multiple central nervous system (CNS) cell populations to the disease pathogenesis.
Project description:The type I JAK inhibitor ruxolitinib is approved for therapy of MPN patients but evokes resistance with longer exposure. Several novel type I JAK inhibitors were studied and we show that they uniformly induce resistance via a shared mechanism of JAK family heterodimer formation.Here we studied the expression profiles of SET2 cell lines persistent to several different type I JAK inhibitors in comparison to naive SET2 cells or in comparison to SET2 cells with acute exposure to ruxolitinib. Analysis of RNA isolated from several type I JAK inhibitor SET2 cell lines in comparison to naïve SET2 cells