Project description:Plasma, kidney, sciatic nerve, and retina samples collected from control (db/m) and diabetic (db/db) mice. Samples snap frozen and stored at -80. Plasma volume measured and tissues weighed for lipid extraction.
Project description:Determining lipid composition of diabetic microvascular complication-prone tissues and comparing tissues levels to plasma levels. Samples are in addition to plasma and kidney tissue samples ran (shotgun lipidomics) in June-July 2014.
Project description:As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
Project description:BackgroundAbnormal lipid metabolism is common in patients with primary biliary cholangitis (PBC). PBC and Sjögren's syndrome (SS) frequently coexist in clinical practice; however, the lipid characteristics of both diseases are unknown. Therefore, we aimed to analyze the plasma lipid profiles of both diseases.MethodsPlasma samples from 60 PBC patients, 30 SS patients, and 30 healthy controls (HC) were collected, and untargeted lipidomics was performed using ultrahigh-performance liquid chromatography high-resolution mass spectrometry. Potential lipid biomarkers were screened through an orthogonal projection to latent structure discriminant analysis and further evaluated using receiver operating characteristic (ROC) analysis.ResultsA total of 115 lipids were differentially upregulated in PBC patients compared with HC. Seventeen lipids were positively associated with the disease activity of PBC, and ROC analysis showed that all of these lipids could differentiate between ursodeoxycholic acid (UDCA) responders and UDCA non-responders. The top six lipids based on the area under the curve (AUC) values were glycerophosphocholine (PC) (16:0/16:0), PC (18:1/18:1), PC (42:2), PC (16:0/18:1), PC (17:1/14:0), and PC (15:0/18:1). In comparison with SS, 44 lipids were found to be differentially upregulated in PBC. Additionally, eight lipids were found to have a good diagnostic performance of PBC because of the AUC values of more than 0.9 when identified from SS and HC groups, which were lysophosphatidylcholines (LysoPC) (16:1), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/20:4), PC (18:0/20:3), PC (18:1/20:2), PC (20:0/22:5), and PC (20:1/22:5).ConclusionOur study revealed differentially expressed lipid signatures in PBC compared with HC and SS. PC is the main lipid species associated with disease activity and the UDCA response in patients with PBC.
Project description:Diabetic retinopathy (DR) is a major cause of blindness worldwide and may be non-proliferative (NPDR) or proliferative (PDR). To Investig.gate the metabolomic and lipidomic characteristics of plasma in DR patients, plasma samples were collected from patients with type 2 diabetes mellitus (DR group) with PDR (n = 27), NPDR (n = 18), or no retinopathy (controls, n = 21). Levels of 54 and 41 metabolites were significantly altered in the plasma of DR patients under positive and negative ion modes, respectively. By subgroup analysis, 74 and 29 significantly changed plasma metabolites were detected in PDR patients compared with NPDR patients under positive and negative ion modes, respectively. KEGG analysis indicated that pathways such as biosynthesis of amino acids and neuroactive ligand-receptor interaction were among the most enriched pathways in altered metabolites in the DR group and PDR subgroup. Moreover, a total of 26 and 41 lipids were significantly changed in the DR group and the PDR subgroup, respectively. The panel using the 29-item index could discriminate effectively between diabetic patients with and without retinopathy, and the panel of 22 items showed effective discrimination between PDR and NPDR. These results provide a basis for further research into the therapeutic targets associated with these metabolite and lipid alterations.
Project description:Lipidomics - the global assessment of lipids - can be performed using a variety of mass spectrometry (MS)-based approaches. However, choosing the optimal approach in terms of lipid coverage, robustness and throughput can be a challenging task. Here, we compare a novel targeted quantitative lipidomics platform known as the Lipidyzer to a conventional untargeted liquid chromatography (LC)-MS approach. We find that both platforms are efficient in profiling more than 300 lipids across 11 lipid classes in mouse plasma with precision and accuracy below 20% for most lipids. While the untargeted and targeted platforms detect similar numbers of lipids, the former identifies a broader range of lipid classes and can unambiguously identify all three fatty acids in triacylglycerols (TAG). Quantitative measurements from both approaches exhibit a median correlation coefficient (r) of 0.99 using a dilution series of deuterated internal standards and 0.71 using endogenous plasma lipids in the context of aging. Application of both platforms to plasma from aging mouse reveals similar changes in total lipid levels across all major lipid classes and in specific lipid species. Interestingly, TAG is the lipid class that exhibits the most changes with age, suggesting that TAG metabolism is particularly sensitive to the aging process in mice. Collectively, our data show that the Lipidyzer platform provides comprehensive profiling of the most prevalent lipids in plasma in a simple and automated manner.
Project description:The goal of this research was to find the most comprehensive lipid extraction of blood plasma, while also providing adequate aqueous preparation for metabolite analysis. Comparisons have been made previously of the Folch, Bligh-Dyer, and Matyash lipid extractions; furthermore, this paper provides an additional comparison of a phospholipid removal plate for analysis. This plate was used for lipid extraction rather than its intended use in lipid removal for polar analysis, and it proves to be robust for targeted lipid analysis. Folch and Matyash provided reproducible recovery over a range of lipid classes, however the Matyash aqueous layer compared well to a typical methanol preparation for polar metabolite analysis. Thus, the Matyash method is the best choice for an untargeted biphasic extraction for metabolomics and lipidomics in blood plasma.
Project description:Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Project description:In biological systems lipids generate membranes and have a key role in cell signaling and energy storage. Therefore, there is a wide diversity of molecular lipid expressed at the compositional level in cell membranes and organelles, as well as in tissues, whose lipid distribution remains unclear. Here, we report a mass spectrometry study of lipid abundance across 7 rat tissues, detecting and quantifying 652 lipid molecular species from the glycerolipid, glycerophospholipid, fatty acyl, sphingolipid, sterol lipid and prenol lipid categories. Our results demonstrate that every tissue analyzed presents a specific lipid distribution and concentration. Thus, glycerophospholipids are the most abundant tissue lipid, they share a similar tissue distribution but differ in particular lipid species between tissues. Sphingolipids are more concentrated in the renal cortex and sterol lipids can be found mainly in both liver and kidney. Both types of white adipose tissue, visceral and subcutaneous, are rich in glycerolipids but differing the amount. Acylcarnitines are mainly in the skeletal muscle, gluteus and soleus, while heart presents higher levels of ubiquinone than other tissues. The present study demonstrates the existence of a rat tissue-specific fingerprint.