Project description:Cardiovascular disease contributes significantly to the adverse clinical outcomes of peritoneal dialysis (PD) patients. Numerous cardiovascular risk factors play important roles in the development of various cardiovascular complications. Of these, loss of residual renal function is regarded as one of the key cardiovascular risk factors and is associated with an increased mortality and cardiovascular death. It is also recognized that PD solutions may incur significant adverse metabolic effects in PD patients. The International Society for Peritoneal Dialysis (ISPD) commissioned a global workgroup in 2012 to formulate a series of recommendations regarding lifestyle modification, assessment and management of various cardiovascular risk factors, as well as management of the various cardiovascular complications including coronary artery disease, heart failure, arrhythmia (specifically atrial fibrillation), cerebrovascular disease, peripheral arterial disease and sudden cardiac death, to be published in 2 guideline documents. This publication forms the first part of the guideline documents and includes recommendations on assessment and management of various cardiovascular risk factors. The documents are intended to serve as a global clinical practice guideline for clinicians who look after PD patients. The ISPD workgroup also identifies areas where evidence is lacking and further research is needed.
Project description:Mammals display wide range of variation in their lifespan. Investigating the molecular networks that distinguish long- from short-lived species has proven useful to identify determinants of longevity. Here, we compared the liver of long-lived naked mole-rats (NMRs) and the phylogenetically closely related, shorter-lived, guinea pigs using an integrated omic approach. We found that NMRs livers display a unique expression pattern of mitochondrial proteins that result in distinct metabolic features of their mitochondria. For instance, we observed a generally reduced respiration rate associated with lower protein levels of respiratory chain components, particularly complex I, and increased capacity to utilize fatty acids. Interestingly, we show that the same molecular networks are affected during aging in both NMR and humans, supporting a direct link to the extraordinary longevity of both species. Finally, we identified a novel longevity pathway and validated it experimentally in the nematode C. elegans.
Project description:BACKGROUND & AIMS: Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC), however the molecular mechanisms still remain unclear. To elucidate this issue, cross-species analysis was performed to compare gene expression patterns of HCC from human patients and melanocortin 4 receptor-knockout (MC4R-KO) mice, developing HCC with obesity, insulin resistance and dyslipidemia. METHODS: Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and MC4R-KO mice into two distinct subgroups, one of which included all the mouse HCC was etiologically associated with metabolic risk factors, such as obesity and diabetes. A specific biomarker was identified by the integrative analysis, and validated with in vitro studies and other cohort patients. RESULTS: As commonly overexpressed in human and mouse metabolic disease-associated HCC, FABP4 was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Then, we established subclones constitutively expressing FABP4 from a human HSC cell line, in which the expression levels of inflammatory chemokines including IL1A and IL6 was upregulated through NF-κB nuclear translocation. An immunohistochemical validation study of other 106 human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and that the FABP4-high group was composed of patients with non-viral and non-alcoholic HCC (P=0.027) and with multiple metabolic risk factors (P<0.001) compared with the FABP4-low. CONCLUSIONS: FABP4 overexpression in HSCs could contribute to hepatocellular carcinogenesis in patients with metabolic risk factors via modulation of inflammatory pathway, and is a promising novel biomarker as well as a potential therapeutic target for this subtype of HCC.
Project description:BACKGROUND & AIMS: Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC), however the molecular mechanisms still remain unclear. To elucidate this issue, cross-species analysis was performed to compare gene expression patterns of HCC from human patients and melanocortin 4 receptor-knockout (MC4R-KO) mice, developing HCC with obesity, insulin resistance and dyslipidemia. METHODS: Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and MC4R-KO mice into two distinct subgroups, one of which included all the mouse HCC was etiologically associated with metabolic risk factors, such as obesity and diabetes. A specific biomarker was identified by the integrative analysis, and validated with in vitro studies and other cohort patients. RESULTS: As commonly overexpressed in human and mouse metabolic disease-associated HCC, FABP4 was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Then, we established subclones constitutively expressing FABP4 from a human HSC cell line, in which the expression levels of inflammatory chemokines including IL1A and IL6 was upregulated through NF-κB nuclear translocation. An immunohistochemical validation study of other 106 human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and that the FABP4-high group was composed of patients with non-viral and non-alcoholic HCC (P=0.027) and with multiple metabolic risk factors (P<0.001) compared with the FABP4-low. CONCLUSIONS: FABP4 overexpression in HSCs could contribute to hepatocellular carcinogenesis in patients with metabolic risk factors via modulation of inflammatory pathway, and is a promising novel biomarker as well as a potential therapeutic target for this subtype of HCC.
Project description:BACKGROUND & AIMS: Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC), however the molecular mechanisms still remain unclear. To elucidate this issue, cross-species analysis was performed to compare gene expression patterns of HCC from human patients and melanocortin 4 receptor-knockout (MC4R-KO) mice, developing HCC with obesity, insulin resistance and dyslipidemia. METHODS: Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and MC4R-KO mice into two distinct subgroups, one of which included all the mouse HCC was etiologically associated with metabolic risk factors, such as obesity and diabetes. A specific biomarker was identified by the integrative analysis, and validated with in vitro studies and other cohort patients. RESULTS: As commonly overexpressed in human and mouse metabolic disease-associated HCC, FABP4 was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Then, we established subclones constitutively expressing FABP4 from a human HSC cell line, in which the expression levels of inflammatory chemokines including IL1A and IL6 was upregulated through NF-κB nuclear translocation. An immunohistochemical validation study of other 106 human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and that the FABP4-high group was composed of patients with non-viral and non-alcoholic HCC (P=0.027) and with multiple metabolic risk factors (P<0.001) compared with the FABP4-low. CONCLUSIONS: FABP4 overexpression in HSCs could contribute to hepatocellular carcinogenesis in patients with metabolic risk factors via modulation of inflammatory pathway, and is a promising novel biomarker as well as a potential therapeutic target for this subtype of HCC.
Project description:Background/Objective: A dysregulated metabolism has been studied as a key aspect of the COVID-19 pathophysiology, but its longitudinal progression in severe cases remains unclear. In this study, we aimed to investigate metabolic dysregulation over time in patients with severe COVID-19 requiring mechanical ventilation (MV). Methods: In this single-center, prospective, observational study, we obtained 236 serum samples from 118 adult patients on MV in an ICU. The metabolite measurements were performed using capillary electrophoresis Fourier transform mass spectrometry, and we categorized the sampling time points into three time zones to align them with the disease progression: time zone 1 (T1) (the hyperacute phase, days 1-3 post-MV initiation), T2 (the acute phase, days 4-14), and T3 (the chronic phase, days 15-30). Using volcano plots and enrichment pathway analyses, we identified the differential metabolites (DMs) and enriched pathways (EPs) between the survivors and non-survivors for each time zone. The DMs and EPs were further grouped into early-stage, late-stage, and consistent groups based on the time zones in which they were detected. Results: With the 566 annotated metabolites, we identified 38 DMs and 17 EPs as the early-stage group, which indicated enhanced energy production in glucose, amino acid, and fatty acid metabolisms in non-survivors. As the late-stage group, 84 DMs and 10 EPs showed upregulated sphingolipid, taurine, and tryptophan-kynurenine metabolisms with downregulated steroid hormone synthesis in non-survivors. Three DMs and 23 EPs in the consistent group showed more pronounced dysregulation in the dopamine and arachidonic acid metabolisms across all three time zones in non-survivors. Conclusions: This study elucidated the temporal differences in metabolic dysregulation between survivors and non-survivors of severe COVID-19, offering insights into its longitudinal progression and disease mechanisms.
Project description:Acute intermittent porphyria (AIP) is an inherited rare hepatic disorder due to mutations within the hydroxymethylbilane gene. AIP patients with active disease overproduce aminolevulinic acid (ALA) and porphobilinogen (PBG) in the liver which are exported inducing severe neurological attacks. Different hepatic metabolic abnormalities have been described to be associated with this condition. The goal of this research was to explore the metabolome of symptomatic AIP patients by state-of-the art liquid chromatography-tandem mass spectrometry (LC-MS/MS). A case versus control study including 18 symptomatic AIP patients and 33 healthy controls was performed. Plasmatic levels of 51 metabolites and 16 ratios belonging to four metabolic pathways were determined. The results showed that the AIP patients presented significant changes in the two main areas of the metabolome under study: (a) the tryptophan/kynurenine pathway with an increase of tryptophan in plasma together with increase of the kynurenine/tryptophan ratio; and (b) changes in the tricarboxylic acid cycle (TCA) including increase of succinic acid and decrease of the fumaric acid/succinic acid ratio. We performed a complementary in vitro study adding ALA to hepatocytes media that showed some of the effects on the TCA cycle were parallel to those observed in vivo. Our study confirms in plasma previous results obtained in urine showing that AIP patients present a moderate increase of the kynurenine/tryptophan ratio possibly associated with inflammation. In addition, it also reports changes in the mitochondrial TCA cycle that, despite requiring further research, could be associated with an energy misbalance due to sustained overproduction of heme-precursors in the liver.
Project description:IntroductionWilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult.ObjectiveThe aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition.MethodsHydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis.ResultsAfter adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress.ConclusionsPatients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.