Project description:Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. We identify widespread regulation of neutrophil 'omics' landscapes with organismal aging and biological sex. In addition, we leverage our resource to predict functional differences, including changes in neutrophil responses to activation signals. To date, this dataset represents the largest multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil characteristics which could be targeted to improve immune responses as a function of sex and/or age.
Project description:The generation and maintenance of protective immunity is a dynamic interplay between host and environment that is impacted by age. Understanding fundamental changes in the healthy immune system that occur over a lifespan is critical in developing interventions for age-related susceptibility to infections and diseases. Here, we use multi-omic profiling (scRNA-seq, proteomics, flow cytometry) to examined human peripheral immunity in over 300 healthy adults, with 96 young and older adults followed over two years with yearly vaccination. The resulting resource includes scRNA-seq datasets of >16 million PBMCs, interrogating 71 immune cell subsets from our new Immune Health Atlas. This study allows unique insights into the composition and transcriptional state of immune cells at homeostasis, with vaccine perturbation, and across age. We find that T cells specifically accumulate age-related transcriptional changes more than other immune cells, independent from inflammation and chronic perturbation. Moreover, impaired memory B cell responses to vaccination are linked to a Th2-like state shift in older adults' memory CD4 T cells, revealing possible mechanisms of immune dysregulation during healthy human aging. This extensive resource is provided with a suite of exploration tools at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ to enhance data accessibility and further the understanding of immune health across age.
Project description:HIP-55 (HPK1 [hematopoietic progenitor kinase 1] -interacting protein of 55 kDa) contains an actin-depolymerizing factor homology (ADF-H) domain at the N-terminus and a src homology 3 (SH3) domain at the C-terminus, which plays an important role in the T cell receptor (TCR) and B-cell receptor (BCR) signaling and immune system. In our previous studies, HIP-55 was found to be highly expressed in several types of tumors and function as a novel oncogenic signaling hub that regulates tumor progression and metastasis through defined functional domains, actin-binding and SH3 modules. However, the wider functions and mechanisms of HIP-55 are still unclear. Here, multi-omic analysis revealed that one of the main biofunctions of HIP-55 is the regulation of cytokines release. Furthermore, to investigate the role of HIP-55 in the cytokine production, a series Cytokine Antibody Arrays were performed to detect differentially expressed cytokines between control and HIP-55 knockdown cells. A total of 97 differentially expressed cytokines were identified from 300 cytokines in A549 cell. Bioinformatics analysis showed these differentially cytokines were mainly enriched in cancer signal pathways and IL-6 is the most critical hub in the integrated network. Analysis of RNAseq data from lung cancer patients showed that there is a strong negative correlation between HIP-55 and interleukin-6 (IL-6) in samples from lung adenocarcinoma patients. Our data indicated that HIP-55 may participate in cancer progression and metastasis via regulating cytokines release.
Project description:Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.
Project description:We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Project description:The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations. We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males. Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.
Project description:Prostate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility, however, mechanistic and functional validation of these mutations are lacking. We used CRISPR-Cas9 genome editing to introduce a missense variant identified in the ELAC2 gene, which encodes a dually localized nuclear and mitochondrial RNA processing enzyme, into the mouse Elac2 gene as well as to generate a prostate-specific knockout of Elac2. These mutations caused enlargement and inflammation of the prostate and nodule formation. The Elac2 variant or knockout mice on the background of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model show that Elac2 mutation with a secondary genetic insult exacerbated the onset and progression of prostate cancer. Multi-omic profiling revealed defects in energy metabolism that activated proinflammatory and tumorigenic pathways as a consequence of impaired non-coding RNA processing and reduced protein synthesis. Our physiologically relevant models show that the ELAC2 variant is a predisposing factor for prostate cancer and identify changes that underly the pathogenesis of this cancer.
Project description:Lung tumors are a leading cause of cancer-related death worldwide. Lung cancers are highly heterogeneous on their phenotypes, both at the cellular and molecular levels. Efforts to better understand the biological origins and outcomes of lung cancer in terms of this enormous variability often require of high-throughput experimental techniques paired with advanced data analytics. Anticipated advancements in multi-omic methodologies hold potential to reveal a broader molecular perspective of these tumors. This study introduces a theoretical and computational framework for generating network models depicting regulatory constraints on biological functions in a semi-automated way. The approach successfully identifies enriched functions in analyzed omics data, focusing on Adenocarcinoma (LUAD) and Squamous cell carcinoma (LUSC, a type of NSCLC) in the lung. Valuable information about novel regulatory characteristics, supported by robust biological reasoning, is illustrated, for instance by considering the role of genes, miRNAs and CpG sites associated with NSCLC, both novel and previously reported. Utilizing multi-omic regulatory networks, we constructed robust models elucidating omics data interconnectedness, enabling systematic generation of mechanistic hypotheses. These findings offer insights into complex regulatory mechanisms underlying these cancer types, paving the way for further exploring their molecular complexity.
Project description:BackgroundMolecular profiling is increasingly used to match patients with metastatic cancer to targeted therapies, but obtaining a high-quality biopsy specimen from metastatic sites can be difficult.MethodsPatient samples were received by Perthera to coordinate genomic, proteomic and/or phosphoproteomic testing, using a specimen from either the primary tumour or a metastatic site. The relative frequencies were compared across specimen sites to assess the potential limitations of using a primary tumour sample for clinical decision support.ResultsNo significant differences were identified at the gene or pathway level when comparing genomic alterations between primary and metastatic lesions. Site-specific trends towards enrichment of MYC amplification in liver lesions, STK11 mutations in lung lesions and ATM and ARID2 mutations in abdominal lesions were seen, but were not statistically significant after false-discovery rate correction. Comparative analyses of proteomic results revealed significantly elevated expression of ERCC1 and TOP1 in metastatic lesions.ConclusionsTumour tissue limitations remain a barrier to precision oncology efforts, and these real-world data suggest that performing molecular testing on a primary tumour specimen could be considered in patients with pancreatic adenocarcinoma who do not have adequate tissue readily available from a metastatic site.
Project description:Introduction: Bacillus licheniformis (B.licheniformis) was widely used in poultry feeds. However, it is still unclear about how B.licheniformis regulates the growth and development of Pekin ducks. Methods: The experiment was designed to clarify the effect and molecular mechanism of B. licheniformis on the lipid metabolism and developmental growth of Pekin ducks through multiomics analysis, including transcriptomic and metabolomic analyses. Results: The results showed that compared with the control group, the addition of 400 mg/kg B. licheniformis could significantly increase the body weight of Pekin ducks and the content of triglyceride (p < 0.05), at the same time, the addition of B. licheniformis could affect the lipid metabolism of liver in Pekin ducks, and the addition of 400 mg/kg B. licheniformis could significantly increase the content of lipoprotein lipase in liver of Pekin ducks. Transcriptomic analysis revealed that the addition of B. licheniformis primarily impacted fatty acid and glutathione, amino acid metabolism, fatty acid degradation, as well as biosynthesis and elongation of unsaturated fatty acids. Metabolomic analysis indicated that B. licheniformis primarily affected the regulation of glycerol phospholipids, fatty acids, and glycerol metabolites. Multiomics analysis demonstrated that the addition of B. licheniformis to the diet of Pekin ducks enhanced the regulation of enzymes involved in fat synthesis via the PPAR signaling pathway, actively participating in fat synthesis and fatty acid transport. Discussion: We found that B. licheniformis effectively influences fat content and lipid metabolism by modulating lipid metabolism-associated enzymes in the liver. Ultimately, this study contributes to our understanding of how B. licheniformis can improve the growth performance of Pekin ducks, particularly in terms of fat deposition, thereby providing a theoretical foundation for its practical application. Conclusion: B. licheniformis can increase the regulation of enzymes related to fat synthesis through PPAR signal pathway, and actively participate in liver fat synthesis and fatty acid transport, thus changing the lipid metabolism of Pekin ducks, mainly in the regulation of glycerol phospholipids, fatty acids and glycerol lipid metabolites.