Project description:A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:Phytoplankton respond to physical and hydrographic forcing on time and space scales up to and including those relevant to climate change. Quantifying changes in phytoplankton communities over these scales is essential for predicting ocean food resources, occurrences of harmful algal blooms, and carbon and other elemental cycles, among other predictions. However, one of the best tools for quantifying phytoplankton communities across relevant time and space scales, ocean color sensors, is constrained by its own spectral capabilities and availability of adequately vetted and relevant optical models. To address this later shortcoming, greater than fifty strains of phytoplankton, from a range of taxonomic lineages, geographic locations, and time in culture, alone and in mixtures, were grown to exponential and/or stationary phase for determination of hyperspectral UV-VIS absorption coefficients, multi-angle and multi-spectral backscatter coefficients, volume scattering functions, particle size distributions, pigment content, and fluorescence. The aim of this publication is to share these measurements to expedite their utilization in the development of new optical models for the next generation of ocean color satellites.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification This experiment is part of a much larger experiment. We have produced 4 454 metatranscriptomic datasets and 6 454 metagenomic datasets. These were derived from 4 samples. The experiment is an ocean acidification mesocosm set up in a Norwegian Fjord in 2006. We suspended 6 bags containing 11,000 L of sea water in a Coastal Fjord and then we bubbled CO2 through three of these bags to simulate ocean acidification conditions in the year 2100. The other three bags were bubbled with air. We then induced a phytoplankton bloom in all six bags and took measurements and performed analyses of phytoplankton, bacterioplankton and physiochemical characteristics over a 22 day period. We took water samples from the peak of the phytoplankton bloom and following the decline of the phytoplankton bloom to analyses using 454 metagenomics and 454 metatranscriptomics. Day 1, High CO2 Bag and Day 1, Present Day Bag, refer to the metatranscriptomes from the peak of the bloom. Day 2, High CO2 Bag and Day 2, Present Day Bag, refer to the metatranscriptomes following the decline of the bloom. Obviously High CO2 refers to the ocean acidification mesocosm and Present Day refers to the control mesocosm. Raw data for both the metagenomic and metatranscriptomic components are available at NCBI's Short Read Archive at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000101
Project description:The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect.
Project description:High-performance liquid chromatography (HPLC) remains one of the most widely applied methods for estimation of phytoplankton community structure from ocean samples, which are used to create and validate satellite retrievals of phytoplankton community structure. HPLC measures the concentrations of phytoplankton pigments, some of which are useful chemotaxonomic markers for phytoplankton groups. Here, consistent suites of HPLC phytoplankton pigments measured on global surface water samples are compiled across spatial scales. The global dataset includes >4,000 samples from every major ocean basin and representing a wide range of ecological regimes. The local dataset is composed of six time series from long-term observatory sites. These samples are used to quantify the potential and limitations of HPLC for understanding surface ocean phytoplankton groups. Hierarchical cluster and empirical orthogonal function analyses are used to examine the associations between and among groups of phytoplankton pigments and to diagnose the main controls on these associations. These methods identify four major groups of phytoplankton on global scales (cyanobacteria, diatoms/dinoflagellates, haptophytes, and green algae) that can be identified by diagnostic biomarker pigments. On local scales, the same methods identify more and different taxonomic groups of phytoplankton than are detectable in the global dataset. Notably, diatom and dinoflagellate pigments group together on global scales, but dinoflagellate marker pigments always separate from diatoms on local scales. Together, these results confirm that HPLC pigments can be used for satellite algorithm quantification of no more than four phytoplankton groups on global scales, but can provide higher resolution for local-scale algorithm development and validation.
Project description:Advection by ocean currents modifies phytoplankton size structure at small scales (1-10 cm) by aggregating cells in different regions of the flow depending on their size. This effect is caused by the inertia of the cells relative to the displaced fluid. It is considered that, at larger scales (greater than or equal to 1 km), biological processes regulate the heterogeneity in size structure. Here, we provide observational evidence of heterogeneity in phytoplankton size structure driven by ocean currents at relatively large scales (1-10 km). Our results reveal changes in the phytoplankton size distribution associated with the coastal circulation patterns. A numerical model that incorporates the inertial properties of phytoplankton confirms the role of advection on the distribution of phytoplankton according to their size except in areas with enhanced nutrient inputs where phytoplankton dynamics is ruled by other processes. The observed preferential concentration mechanism has important ecological consequences that range from the phytoplankton level to the whole ecosystem.
Project description:BACKGROUND: Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. METHODOLOGY/PRINCIPAL FINDINGS: If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >10(4) km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. CONCLUSIONS/SIGNIFICANCE: Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution.
Project description:Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides--which may act like an organic ligand--in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined "ligand soup," known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton--a key unknown in iron biogeochemistry.