Project description:Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.
Project description:Recent studies have reported that plasma levels of tricarboxylic acid (TCA) cycle metabolites and TCA cycle-related metabolite change in patients with chronic fatigue syndrome (CFS) and in healthy humans after exercise. Exogenous dietary citric acid has been reported to alleviate fatigue during daily activities and after exercise. However, it is unknown whether dietary citric acid affects the plasma levels of these metabolites. Therefore, the present study aimed to investigate the effects of exogenously administered citric acid on TCA cycle metabolites and TCA cycle-related metabolites in plasma. Sprague-Dawley rats were divided into control and citric acid groups. We evaluated the effect of exogenous dietary citric acid on the plasma TCA cycle and TCA cycle-related metabolites by metabolome analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). TCA cycle metabolites, including plasma citrate, cis-aconitate, and isocitrate, were significantly elevated after exogenous administration of citric acid. Anaplerotic amino acids, which are converted to TCA cycle metabolites, such as serine, glycine, tryptophan, lysine, leucine, histidine, glutamine, arginine, isoleucine, methionine, valine, and phenylalanine, also showed significantly elevated levels. Citric acid administration significantly increased the levels of initial TCA cycle metabolites in the plasma. This increase after administration of citric acid was shown to be opposite to the metabolic changes observed in patients with CFS. These results contribute novel insight into the fatigue alleviation mechanism of citric acid.
Project description:Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Transcriptional consequences on nuclear gene expression of mitochondrial perturbations were examined by a microarray analyses. Expression of 606 genes was altered by monofluoroacetate (MFA) inhibition of the TCA cycle in leaves of soil grown Arabidopsis plants in the dark for 10 hours. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from MFA inhibition were most similarly affected by biotic stresses such as pathogens, not oxidative stresses. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress. Three independent (bio-replicate) experiments were done using three independent plant samples in the treatments. For each, approximately 30 plants were used for the treated sample and about 30 plants were used as the control sample. Plants were treated with 5 mM monofluoroacetate in 0.01% Tween 20 and incubated in the dark at room temperature (25C) for 6 hours. RNA was isolated from the inhibitor treated and control plants and used for microarray experiments. For each independent (bio-replicate) experiment, two microarrays were utilized using Cy3 and Cy5 dye-labeled samples and dye swapping was incorporated- 2 microarrays for each of 3 independent experiments (6 microarrays total).
Project description:AimsTo examine relationships of tricarboxylic acid (TCA) cycle metabolites with risk of cardiovascular events and mortality after acute coronary syndrome (ACS), and evaluate the mediating role of renal function in these associations.MethodsThis is a prospective study performed among 309 ACS patients who were followed for a mean of 6.7 years. During this period 131 patients developed major adverse cardiovascular events (MACE), defined as the composite of myocardial infarction, hospitalization for heart failure, and all-cause mortality, and 90 deaths were recorded. Plasma concentrations of citrate, aconitate, isocitrate, succinate, malate, fumarate, α-ketoglutarate and d/l-2-hydroxyglutarate were quantified using LC-tandem MS. Multivariable Cox regression models were used to estimate hazard ratios, and a counterfactual-based mediation analysis was performed to test the mediating role of estimated glomerular filtration rate (eGFR).ResultsAfter adjustment for traditional cardiovascular risk factors and medications, positive associations were found between isocitrate and MACE (HR per 1 SD, 1.25; 95% CI: 1.03, 1.50), and between aconitate, isocitrate, d/l-2-hydroxyglutarate and all-cause mortality (HR per 1 SD, 1.41; 95% CI: 1.07, 1.84; 1.58; 95% CI: 1.23, 2.02; 1.38; 95% CI: 1.14, 1.68). However, these associations were no longer significant after additional adjustment for eGFR. Mediation analyses demonstrated that eGFR is a strong mediator of these associations.ConclusionThese findings underscore the importance of TCA metabolites and renal function as conjunctive targets in the prevention of ACS complications.
Project description:Many metabolic diseases disrupt endoplasmic reticulum (ER) homeostasis, but little is known about how metabolic activity is communicated to the ER. Here, we show in hepatocytes and other metabolically active cells that decreasing the availability of substrate for the tricarboxylic acid (TCA) cycle diminished NADPH production, elevated glutathione oxidation, led to altered oxidative maturation of ER client proteins, and attenuated ER stress. This attenuation was prevented when glutathione oxidation was disfavored. ER stress was also alleviated by inhibiting either TCA-dependent NADPH production or Glutathione Reductase. Conversely, stimulating TCA activity increased NADPH production, glutathione reduction, and ER stress. Validating these findings, deletion of the Mitochondrial Pyruvate Carrier-which is known to decrease TCA cycle activity and protect the liver from steatohepatitis-also diminished NADPH, elevated glutathione oxidation, and alleviated ER stress. Together, our results demonstrate a novel pathway by which mitochondrial metabolic activity is communicated to the ER through the relay of redox metabolites.
Project description:Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake. We demonstrate that an S. aureus Δfur mutant has decreased expression of acnA, which codes for the Fe-dependent enzyme aconitase. This prevents the Δfur mutant from growing with amino acids as sole carbon and energy sources. We used a suppressor screen to exploit this phenotype and determined that a mutation that decreases the transcription of isrR, which produces a regulatory RNA, increased acnA expression, thereby enabling growth. Directed mutation of bases predicted to facilitate the interaction between the acnA transcript and IsrR, decreased the ability of IsrR to control acnA expression in vivo and IsrR bound to the acnA transcript in vitro. IsrR also bound transcripts coding the alternate tricarboxylic acid cycle proteins sdhC, mqo, citZ and citM. Whole-cell metal analyses suggest that IsrR promotes Fe uptake and increases intracellular Fe not ligated by macromolecules. Lastly, we determined that Fur and IsrR promote infection using murine skin and acute pneumonia models.
Project description:Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Transcriptional consequences on nuclear gene expression of mitochondrial perturbations were examined by a microarray analyses. Expression of 606 genes was altered by monofluoroacetate (MFA) inhibition of the TCA cycle in leaves of soil grown Arabidopsis plants in the dark for 10 hours. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from MFA inhibition were most similarly affected by biotic stresses such as pathogens, not oxidative stresses. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.
Project description:A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD+ and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal.
Project description:Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
Project description:Whether glucose is predominantly metabolized via oxidative phosphorylation or glycolysis differs between quiescent versus proliferating cells, including tumor cells. However, how glucose metabolism is coordinated with cell cycle in mammalian cells remains elusive. Here, we report that mammalian cells predominantly utilize the tricarboxylic acid (TCA) cycle in G1 phase, but prefer glycolysis in S phase. Mechanistically, coupling cell cycle with metabolism is largely achieved by timely destruction of IDH1/2, key TCA cycle enzymes, in a Skp2-dependent manner. As such, depleting SKP2 abolishes cell cycle-dependent fluctuation of IDH1 protein abundance, leading to reduced glycolysis in S phase. Furthermore, elevated Skp2 abundance in prostate cancer cells destabilizes IDH1 to favor glycolysis and subsequent tumorigenesis. Therefore, our study reveals a mechanistic link between two cancer hallmarks, aberrant cell cycle and addiction to glycolysis, and provides the underlying mechanism for the coupling of metabolic fluctuation with periodic cell cycle in mammalian cells.