Project description:Aging is associated with distinct phenotypical, physiological, and functional changes, leading to disease and death. The progression of aging-related traits varies widely among individuals, influenced by their environment, lifestyle, and genetics. In this study, we conducted physiologic and functional tests cross-sectionally throughout the entire lifespan of male C57BL/6N mice. In parallel, metabolomics analyses in serum, brain, liver, heart, and skeletal muscle were also performed to identify signatures associated with frailty and age-dependent functional decline. Our findings indicate that declines in gait speed as a function of age and frailty are associated with a dramatic increase in the energetic cost of physical activity and decreases in working capacity. Aging and functional decline prompt organs to rewire their metabolism and substrate selection and toward redox-related pathways, mainly in liver and heart. Collectively, the data provide a framework to further understand and characterize processes of aging at the individual organism and organ levels.
Project description:Aging is a one-way process associated with profound structural and functional changes in the organism. Indeed, the neuromuscular system undergoes a wide remodeling, which involves muscles, fascia, and the central and peripheral nervous systems. As a result, intrinsic features of tissues, as well as their functional and structural coupling, are affected and a decline in overall physical performance occurs. Evidence from the scientific literature demonstrates that senescence is associated with increased stiffness and reduced elasticity of fascia, as well as loss of skeletal muscle mass, strength, and regenerative potential. The interaction between muscular and fascial structures is also weakened. As for the nervous system, aging leads to motor cortex atrophy, reduced motor cortical excitability, and plasticity, thus leading to accumulation of denervated muscle fibers. As a result, the magnitude of force generated by the neuromuscular apparatus, its transmission along the myofascial chain, joint mobility, and movement coordination are impaired. In this review, we summarize the evidence about the deleterious effect of aging on skeletal muscle, fascial tissue, and the nervous system. In particular, we address the structural and functional changes occurring within and between these tissues and discuss the effect of inflammation in aging. From the clinical perspective, this article outlines promising approaches for analyzing the composition and the viscoelastic properties of skeletal muscle, such as ultrasonography and elastography, which could be applied for a better understanding of musculoskeletal modifications occurring with aging. Moreover, we describe the use of tissue manipulation techniques, such as massage, traction, mobilization as well as acupuncture, dry needling, and nerve block, to enhance fascial repair.
Project description:Recently, the field of developmental neuroscience has aimed to uncover the developmental trajectory of the human brain and to understand the changes that occur as a function of ageing. Here, we present a dataset of functional magnetic resonance imaging (fMRI) data covering the adult lifespan that includes structural MRI and resting-state functional MRI. Four hundred ninety-four healthy adults (age range: 19-80 years; Males=187) were recruited and completed two multi-modal MRI scan sessions at the Brain Imaging Center of Southwest University, Chongqing, China. The goals of the dataset are to give researchers the opportunity to map the developmental trajectories of structural and functional changes in the human brain and to replicate previous findings.
Project description:The study consists of three parts: 1) normal aging in liver and skin (cross-sectional); 2) treatment with rotenone in brain, liver and skin; 3) longitudinal study of 45 fish with different ages at their death measured at two different time points by fin clipping Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:New findingsWhat is the central question of this study? Do changes in myofibre cross-sectional area, pennation angle and fascicle length predict vastus lateralis whole-muscle cross-sectional area changes following resistance training? What is the main finding and its importance? Changes in vastus lateralis mean myofibre cross-sectional area, fascicle length and pennation angle following a period of resistance training did not collectively predict changes in whole-muscle cross-sectional area. Despite the limited sample size in this study, these data reiterate that it remains difficult to generalize the morphological adaptations that predominantly drive tissue-level vastus lateralis muscle hypertrophy.AbstractMyofibre hypertrophy during resistance training (RT) poorly associates with tissue-level surrogates of hypertrophy. However, it is underappreciated that, in pennate muscle, changes in myofibre cross-sectional area (fCSA), fascicle length (Lf ) and pennation angle (PA) likely coordinate changes in whole-muscle cross-sectional area (mCSA). Therefore, we determined if changes in fCSA, PA and Lf predicted vastus lateralis (VL) mCSA changes following RT. Thirteen untrained college-aged males (23 ± 4 years old, 25.4 ± 5.2 kg/m2 ) completed 7 weeks of full-body RT (twice weekly). Right leg VL ultrasound images and biopsies were obtained prior to (PRE) and 72 h following (POST) the last training bout. Regression was used to assess if training-induced changes in mean fCSA, PA and Lf predicted VL mCSA changes. Correlations were also performed between PRE-to-POST changes in obtained variables. Mean fCSA (+18%), PA (+8%) and mCSA (+22%) increased following RT (P < 0.05), but not Lf (0.1%, P = 0.772). Changes in fCSA, Lf and PA did not collectively predict changes in mCSA (R2 = 0.282, adjusted R2 = 0.013, F3,8 = 1.050, P = 0.422). Moderate negative correlations existed for percentage changes in PA and Lf (r = -0.548, P = 0.052) and changes in fCSA and Lf (r = -0.649, P = 0.022), and all other associations were weak (|r| < 0.500). Although increases in mean fCSA, PA and VL mCSA were observed, inter-individual responses for each variable and limitations for each technique make it difficult to generalize the morphological adaptations that predominantly drive tissue-level VL muscle hypertrophy. However, the small subject pool is a significant limitation, and more research in this area is needed.
Project description:BackgroundCerebral perfusion is directly affected by systemic blood pressure, which has been shown to be negatively correlated with cerebral blood flow (CBF). The impact of aging on these effects is not fully understood.PurposeTo determine whether the relationship between mean arterial pressure (MAP) and cerebral hemodynamics persists throughout the lifespan.Study typeRetrospective, cross-sectional study.PopulationSix hundred and sixty-nine participants from the Human Connectome Project-Aging ranging between 36 and 100+ years and without a major neurological disorder.Field strength/sequenceImaging data was acquired at 3.0 Tesla using a 32-channel head coil. CBF and arterial transit time (ATT) were measured by multi-delay pseudo-continuous arterial spin labeling.AssessmentThe relationships between cerebral hemodynamic parameters and MAP were evaluated globally in gray and white matter and regionally using surface-based analysis in the whole group, separately within different age groups (young: <60 years; younger-old: 60-79 years; oldest-old: ≥80 years).Statistical testsChi-squared, Kruskal-Wallis, ANOVA, Spearman rank correlation and linear regression models. The general linear model setup in FreeSurfer was used for surface-based analyses. P < 0.05 was considered significant.ResultsGlobally, there was a significant negative correlation between MAP and CBF in both gray (ρ = -0.275) and white matter (ρ = -0.117). This association was most prominent in the younger-old [gray matter CBF (β = -0.271); white matter CBF (β = -0.241)]. In surface-based analyses, CBF exhibited a widespread significant negative association with MAP throughout the brain, whereas a limited number of regions showed significant prolongation in ATT with higher MAP. The associations between regional CBF and MAP in the younger-old showed a different topographic pattern in comparison to young subjects.Data conclusionThese observations further emphasize the importance of cardiovascular health in mid-to-late adulthood for healthy brain aging. The differences in the topographic pattern with aging indicate a spatially heterogeneous relationship between high blood pressure and CBF.Level of evidence3 TECHNICAL EFFICACY STAGE: 3.