Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. Conclusion: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content.
Project description:We report for the first time movement of Correia Repeat Enclosed Elements, through inversion of the element at its chromosomal location. Analysis of Ion Torrent generated genome sequence data from Neisseria gonorrhoeae strain NCCP11945 passaged for 8 weeks in the laboratory under standard conditions and stress conditions revealed a total of 37 inversions: 24 were exclusively seen in the stressed sample; 7 in the control sample; and the remaining 3 were seen in both samples. These inversions have the capability to alter gene expression in N. gonorrhoeae through the previously determined activities of the sequence features of these elements. In addition, the locations of predicted non-coding RNAs were investigated to identify potential associations with CREE. Associations varied between strains, as did the number of each element identified. The analysis indicates a role for CREE in disrupting ancestral regulatory networks, including non-coding RNAs. RNA-Seq was used to examine expression changes related to Correia repeats in the strain
Project description:Genetic heterogeneity can provide tumors with opportunities for therapy evasion, however the degree of genetic heterogeneity within metastatic melanomas has not been thoroughly investigated. We therefore isolated DNA from different regions of formalin fixed paraffin embedded metastatic melanoma tissue samples and subjected them to amplicon sequencing-based profiling of mutations in a panel of well known cancer genes using the Ion Ampliseq Cancer Panel.
Project description:Despite findings that aldosterone impairs glucose metabolism, studies concerning the effect of primary aldosteronism (PA) and its treatment on glucose metabolism are controversial. We aimed to determine glucose metabolism in PA and the effect of the treatment modality. We compared glucose metabolism between PA patients (N = 286) and age-, sex-, and body mass index-matched controls (N = 816), and the changes in glucose metabolism depending on the treatment modality (adrenalectomy vs. spironolactone treatment). Hyperglycemia including diabetes mellitus (DM; 19.6% vs. 13.1%, p = 0.011) was more frequent in PA patients. Hyperglycemia was also more frequent in PA patients without subclinical hypercortisolism (SH: p < 0.001) and in those regardless of hypokalemia (p < 0.001-0.001). PA patients and PA patients without SH had higher DM risk (odds ratio (OR); 95% confidence interval (CI): 1.63; 1.11-2.39 and 1.65; 1.08-2.51, respectively) after adjusting confounders. In PA patients, there was significant decrease in the DM prevalence (21.3% to 16.7%, p = 0.004) and fasting plasma glucose (p = 0.006) after adrenalectomy. However, there was no significant change in them after spironolactone treatment. Adrenalectomy was associated with more improved glucose status than spironolactone treatment (OR; 95% CI: 2.07; 1.10-3.90). Glucose metabolism was impaired in PA, regardless of hypokalemia and SH status, and was improved by adrenalectomy, but not spironolactone treatment.
Project description:In this study, RNA-Seq was used to reveal the differences of molecular pathways in hepatopancreas of O. niloticus adapated to water with salinity of 8 or 16 practical salinity (psu), respectively, with fish at freshwater as the control,. Significantly changed pathways were mainly related to lipid metabolism, glucose utilization, protein consumption, osmotic regulation, signal transduction and immunology. Based on the tendencies from freshwater to 8 or 16 psu, the differentially expressed gene unions were categorized into eight unique models, which were further classified into three categories which were constant-change (either keep increasing or decreasing), change-then-stable and stable-then-change. In constant-change category, steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were extremely significantly affected by ambient salinity (P < 0.01), indicating that these pathways play pivotal roles in molecular response to salinity acclimation from freshwater to saline water in O. niloticus, and should be the main research focus in the future. In change-then-stable category, ribosome, oxidative phosphorylation, peroxisome proliferator-activated receptors (PPAR) signaling pathway, fat digestion and absorption changed significantly with ambient increasing salinity (P < 0.01), showing these pathways were sensitive to environmental salinity variation, but had a response threshold, and would stop changing once salinity exceeds the threshold. In stable-then-change category, protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis - keratan sulfate were the top changed pathways (P < 0.01), suggesting that these pathways were not sensitive to salinity variation, but these pathways will respond significantly under salinity exceeding a certain level. The pathways and genes reported in this study laid on a solid foundation for future studies in understanding the underlying mechanism for salinity adaptation of freshwater fish. Examination of 3 different salinities treated hepatopancreas in Nile tilapia
Project description:INTRODUCTION: The pathogenesis of osteoarthritis (OA) is characterized by the production of high amounts of nitric oxide (NO), as a consequence of up-regulation of chondrocyte-inducible nitric oxide synthase (iNOS) induced by inflammatory cytokines. NO donors represent a powerful tool for studying the role of NO in the cartilage in vitro. There is no consensus about NO effects on articular cartilage in part because the differences between the NO donors available. The aim of this work is to compare the metabolic profile of traditional and new generation NO donors to see which one points out the osteoarthritic process in the best way. METHODS: Human healthy and OA chondrocytes were isolated from patients undergoing joint replacement surgery, and primary cultured. Cells were stimulated with NO donors (NOC-12 or SNP). NO production was evaluated by the Griess method, and apoptosis was quantified by flow cytometry. Mitochondrial function was evaluated by analysing respiratory chain enzyme complexes, citrate synthase (CS) activities by enzymatic assay, mitochondrial membrane potential (??m) by JC-1 using flow cytometry, and ATP levels were measured by luminescence assays. Glucose transport was measured as the uptake of 2-deoxy-[(3)H]glucose (2-[(3)H]DG). Statistical analysis was performed using the Mann-Whitney U test. RESULTS: NOC-12 liberates approximately ten times more NO2- than SNP, but the level of cell death induced was not as profound as that produced by SNP. Normal articular chondrocytes stimulated with NOC-12 had reduced activity from complexes I, III y IV, and the mitochondrial mass was increased in these cells. Deleterious effects on ??m and ATP levels were more profound with SNP, and this NO donor was able to reduce 2-[(3)H]DG levels. Both NO donors had opposite effects on lactate release, SNP diminished the levels and NOC-12 lead to lactate accumulation. OA chondrocytes incorporate significantly more 2-[(3)H]DG than healthy cells. CONCLUSIONS: These findings suggest that the new generation donors, specifically NOC-12, mimic the OA metabolic process much better than SNP. Previous results using SNP have to be considered prudently since most of the effects observed can be induced by the interactions of secondary products of NO.
Project description:To investigate the effect of pollination on the fruit quality of 'Dangshan Su' pear, 'Dangshan Su' was fertilized by the pollen of 'Wonhwang' (Pyrus pyrifolia Nakai.) (DW) and 'Jingbaili' (Pyrus ussuriensis Maxim.) (DJ). The analysis of primary metabolites was achieved through untargeted metabolomics, and the quantitative analysis of intermediate metabolites of lignin synthesis was undertaken using targeted metabolomics. The untargeted metabolomics analysis was performed via gas chromatography-mass spectrometry (GC-MS). The targeted metabolomics analysis was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) under the multiple reaction monitoring (MRM) mode. The results showed that the metabolite content was significantly different between DW and DJ. Compared with that in DJ, the sugar and amino acid content in DW was higher and the fatty acid content was lower at 47 days after pollination (DAPs), and the sugar, amino acid, and fatty acid content in DW was lower at 63 DAPs. The intermediate metabolites of lignin synthesis were analyzed using the orthogonal partial least squares discriminant analysis (OPLS-DA) model, and the differential metabolites at 47 DAPs were p-coumaric acid, ferulic acid, sinapaldehyde, coniferyl alcohol, and sinapyl alcohol. The differential significant metabolite at 63 DAPs was p-coumaric acid. At 47 DAPs and 63 DAPs, the p-coumaric acid level was significantly different, and the p-coumaric acid content was positively correlated with lignin synthesis. The pollination pollen affects the quality of 'Dangshan Su' pear fruit through regulation of the sugar, amino acid, and fatty acid content; at the same time, regulating the levels of intermediate metabolites of lignin synthesis, especially the p-coumaric acid content, to affect lignin synthesis ultimately affects the stone cell content and improves the quality of the pears.
Project description:The molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the pre-ovulatory LH-surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal and granulosa cell type-specific biological functions and signaling pathways, large dominant bovine follicles were collected before and 21 hrs after an exogenous GnRH induced LH surge. Because LH receptor density varies within the granulosa cell populations, antral granulosa (aGC; those aspirated by follicular puncture) and membrane associated granulosa (mGC; those scraped from the follicular wall) were compared to thecal cell expression profiles determined by mRNA microarrays. Thecal cell gene expression was less affected in the peri-ovulatory follicle when compared to granulosa cells, as evidenced by only 2% versus 25% of the ~11,000 genes expressed changing in response to the LH surge, respectively. The majority of the 203 LH-regulated thecal genes were also LH regulated in granulosa cells, leaving a total of 58 genes as LH-regulated theca cell specific genes. Most of the 58 genes (i.e., 74%) thecal specific genes including several known thecal markers (CYP17A1, NR5A1) were downregulated, while most genes identified are new to theca. Many of the newly identified upregulated thecal genes (e.g., PTX3, RND3, PPP4R4) were also upregulated in granulosa. Minimal expression differences were observed between aGC and mGC, however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) predominated these differences. We also identified large numbers of unknown LH-regulated granulosa cell genes and discuss their putative roles in ovarian function. The single dominant ovarian follicle was collected from each cow before the LH surge or 22 hours after GnRH (used to induce LH surge). RNA was extracted from three independent cells within each follicle and there were hybridized on Affymetrix microarrays.