Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. Recently, disorders of metabolism are thought to be the center of many diseases such as OPLL. Advanced glycation end product (AGE) are accumulated in many extracellular matrixes such as ligament fibers, and it can functions as cellular signal through its receptor (RAGE), contributing to various events such as atherosclerosis or oxidative stress. However, its role in OPLL formation is not yet known. Therefore, we performed high-through-put RNA sequencing on primary posterior longitudinal ligament cells treated with different doses of AGEs (1µM, 5µM and negative control), with or without BMP2 (1µM). mRNA profiles of Primary human posterior longitudinal ligament cells stimulated with various stimuli (Control, 1µM AGE-BSA, 5µM AGE-BSA, 1µM AGE-BSA with BMP2, 5µM AGE-BSA with BMP2) were generated by deep sequencing on Ion Proton
Project description:Long non-coding RNAs (lncRNAs) are recently characterized players that are involved in the regulatory circuitry of self-renewal in human embryonic stem cells (hESCs). However, the specific roles of lncRNAs in this circuitry are poorly understood. Here, we determined that growth-arrest-specific transcript 5 (GAS5), which is a known tumor suppressor and growth arrest gene, is abundantly expressed in the cytoplasm of hESCs and essential for hESC self-renewal. GAS5 depletion in hESCs significantly impaired their pluripotency and self-renewal ability, whereas GAS5 overexpression in hESCs accelerated the cell cycle, enhanced their colony formation ability and increased pluripotency marker expression. By RNA sequencing and bioinformatics analysis, we determined that GAS5 activates NODAL-SMAD2/3 signaling by sustaining the expression of NODAL, which plays a key role in hESC self-renewal but not in somatic cell growth. Further studies indicated that GAS5 functions as a competing endogenous RNA (ceRNA) to protect NODAL mRNA against degradation and that GAS5 transcription is directly controlled by the core pluripotency transcriptional factors (TFs). Taken together, we suggest that the core TFs, GAS5 and NODAL-SMAD2/3 form a feed-forward loop to maintain the hESC self-renewal process. These findings are specific to ESCs and did not occur in the somatic cell lines we tested; therefore, our findings also provide evidence that the functions of lncRNAs vary in different biological contexts. We analyzed long non-coding RNAs in two hESC cell lines (X-01 and H1), and found GAS5 is highly expressed and functional in maintaining hESC self-renewal. We generate stable overexpressed or knockdown hESC cell lines using lentiviral approach. We transfected cells initialy after passage, and lentiviruses are added with daily medium change for three days (at a final concentration of 10^5 IU/ml). Puromycin is added for selection and supplied with daily medium change. Stable cell lines are established after two passages and verified under fluorescence scope. Total RNAs and miRNAs are extracted separately of all three cell lines (LV-NC, LV-GAS5 and LV-shGAS5) and put to sequencing.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.
Project description:The type I JAK inhibitor ruxolitinib is approved for therapy of MPN patients but evokes resistance with longer exposure. Several novel type I JAK inhibitors were studied and we show that they uniformly induce resistance via a shared mechanism of JAK family heterodimer formation.Here we studied the expression profiles of SET2 cell lines persistent to several different type I JAK inhibitors in comparison to naive SET2 cells or in comparison to SET2 cells with acute exposure to ruxolitinib. Analysis of RNA isolated from several type I JAK inhibitor SET2 cell lines in comparison to naïve SET2 cells
Project description:We used ATLAS-seq to comprehensively map the genomic location of LINE-1 elements belonging to the youngest and potentially polymorphic subfamily (L1HS-Ta). This was performed in a panel of 12 human primary or transformed cell lines (BJ, IMR90, MRC5, H1, K562, HCT116, HeLa S3, HepG2, MCF7, HEK-293, HEK-293T, 2102Ep). In brief, ATLAS-seq relies on the random mechanical fragmentation of the genomic DNA to ensure high-coverage, ligation of adapter sequences, suppression PCR-amplification of L1HS-Ta element junctions, and Ion Torrent sequencing using single-end 400 bp read chemistry. A notable aspect of ATLAS-seq is that we can obtain both L1 downstream and upstream junctions (3'- and 5'-ATLAS-seq libraries, respectively), for full-length L1 elements. Note that a 10-nt sample-specific barcode has been removed at the 5' end of the reads in the .fastq files upon demultiplexing. This was achieved using cutadapt v1.9.2.dev0 (with the following parameters: -e 0.1 -q 10 -m 25 -g <barcode_name>=^<barcode_sequence>)
Project description:Histone H3 lysine 9 dimethylation (H3K9me2) is a highly conserved silencing epigenetic mark. Chromatin marked with H3K9me2 forms large domains in mammalian cells and overlaps well with lamina-associated domains and the B compartment defined by Hi-C. However, the role of H3K9me2 in 3-dimensional (3D) genome organization remains unclear. We investigated genome-wide H3K9me2 distribution, transcriptome, and 3D genome organization in mouse embryonic stem cells following the inhibition or depletion of five H3K9 methyltransferases (MTases): G9a, GLP, SETDB1, SUV39H1, and SUV39H2. H3K9me2 was regulated by all five MTases; however, H3K9me2 and transcription in the A and B compartments were regulated by different MTases. H3K9me2 in A compartments was primarily regulated by G9a/GLP and SETDB1, while H3K9me2 in the B compartments was regulated by all five MTases. Furthermore, decreased H3K9me2 correlated with changes to the more active compartmental state that accompanied transcriptional activation.
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:Estrogens receptor a (ERα) is essential for breast tumors,since about seventy percent of breast cancers are detected as ERα positive.Recent studies suggest that ERα is related with the epithelial cell morphology. Recently, it has demonstrated that the suppression of ERα induced epithelial-mesenchymal transition (EMT) in the MCF-7 breast cacner cells. Interestingly, the loss of ERa resulted in strong differences on the gene expression profile of a variety of genes. Therefore, the aim of the RNA-seq is to elucidate the effect of the silencing of ERα on the mRNA levels of a larger variety of genes, thus revealing possible target genes which may be implicated on the aggressive phenotype and behavior of the ERα-suppresed MCF-7/SP10+ breast cancer cells. For this reason total RNA from both MCF-7/SP10+ cells and of their internal control MCF-7/C cells was extracted in 3 biological replicates and 3 technical replicates.
Project description:We aimed to identify urinary exosomal ncRNAs as novel biomarkers for diagnosis of Chronic Kidney Disease (CKD) for this, we examined 15 exosomal ncRNA profiles in urine samples from CKD patients from four different stages (I, II, III and IV) and compared them to 10 healthy controls. We identified a significant number of novel, differentially expressed ncRNAs in CKD patients compared to healthy, which might be employed as early diagnostic markers in CKD in the future.