Cognitive Behavioral Therapy for Irritable Bowel Syndrome Induces Bidirectional Alterations in the Brain-Gut-Microbiome Axis Associated with Gastrointestinal Symptom Improvement
Project description:BackgroundThere is growing recognition that bidirectional signaling between the digestive tract and the brain contributes to irritable bowel syndrome (IBS). We recently showed in a large randomized controlled trial that cognitive behavioral therapy (CBT) reduces IBS symptom severity. This study investigated whether baseline brain and gut microbiome parameters predict CBT response and whether response is associated with changes in the brain-gut-microbiome (BGM) axis.MethodsEighty-four Rome III-diagnosed IBS patients receiving CBT were drawn from the Irritable Bowel Syndrome Outcome Study (IBSOS; ClinicalTrials.gov NCT00738920) for multimodal brain imaging and psychological assessments at baseline and after study completion. Fecal samples were collected at baseline and post-treatment from 34 CBT recipients for 16S rRNA gene sequencing, untargeted metabolomics, and measurement of short-chain fatty acids. Clinical measures, brain functional connectivity and microstructure, and microbiome features associated with CBT response were identified by multivariate linear and negative binomial models.ResultsAt baseline, CBT responders had increased fecal serotonin levels, and increased Clostridiales and decreased Bacteroides compared to non-responders. A random forests classifier containing 11 microbial genera predicted CBT response with high accuracy (AUROC 0.96). Following treatment, CBT responders demonstrated reduced functional connectivity in regions of the sensorimotor, brainstem, salience, and default mode networks and changes in white matter in the basal ganglia and other structures. Brain changes correlated with microbiome shifts including Bacteroides expansion in responders.ConclusionsPre-treatment intestinal microbiota and serotonin levels were associated with CBT response, suggesting that peripheral signals from the microbiota can modulate central processes affected by CBT that generate abdominal symptoms in IBS. CBT response is characterized by co-correlated shifts in brain networks and gut microbiome that may reflect top-down effects of the brain on the microbiome during CBT. Video abstract.
Project description:There is a fine balance in the mutual relationship between the intestinal microbiota and its mammalian host. It is thought that disruptions in this fine balance contribute/account for the pathogenesis of many diseases. Recently, the significance of the relationship between gut microbiota and its mammalian host in the pathogenesis of obesity and the metabolic syndrome has been demonstrated. Emerging data has linked intestinal dysbiosis to several gastrointestinal diseases including inflammatory bowel disease, irritable bowel syndrome, nonalcoholic fatty liver disease, and gastrointestinal malignancy. This article is intended to review the role of gut microbiota maintenance/alterations of gut microbiota as a significant factor as a significant factor discriminating between health and common diseases. Based on current available data, the role of microbial manipulation in disease management remains to be further defined and a focus for further clinical investigation.
Project description:ObjectiveIntermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis.MethodsIn this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples.ResultsOur results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes.ConclusionsThere was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.
Project description:BackgroundUnderstanding the mechanism of the sexual dimorphism in susceptibility to obesity and metabolic syndrome (MS) is important for the development of effective interventions for MS.ResultsHere we show that gut microbiome mediates the preventive effect of estrogen (17β-estradiol) on metabolic endotoxemia (ME) and low-grade chronic inflammation (LGCI), the underlying causes of MS and chronic diseases. The characteristic profiles of gut microbiome observed in female and 17β-estradiol-treated male and ovariectomized mice, such as decreased Proteobacteria and lipopolysaccharide biosynthesis, were associated with a lower susceptibility to ME, LGCI, and MS in these animals. Interestingly, fecal microbiota-transplant from male mice transferred the MS phenotype to female mice, while antibiotic treatment eliminated the sexual dimorphism in MS, suggesting a causative role of the gut microbiome in this condition. Moreover, estrogenic compounds such as isoflavones exerted microbiome-modulating effects similar to those of 17β-estradiol and reversed symptoms of MS in the male mice. Finally, both expression and activity of intestinal alkaline phosphatase (IAP), a gut microbiota-modifying non-classical anti-microbial peptide, were upregulated by 17β-estradiol and isoflavones, whereas inhibition of IAP induced ME and LGCI in female mice, indicating a critical role of IAP in mediating the effects of estrogen on these parameters.ConclusionsIn summary, we have identified a previously uncharacterized microbiome-based mechanism that sheds light upon sexual dimorphism in the incidence of MS and that suggests novel therapeutic targets and strategies for the management of obesity and MS in males and postmenopausal women.
Project description:Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by SFTS virus, and the number of SFTS cases increased year by year in China. Previous studies had indicated that gut microbiome closely associated with human health and diseases, including infection diseases, liver diseases, gastrointestinal diseases and metabolic diseases. The aim of this study is to investigate the alterations and involvements of gut microbial in SFTS patients. We compared the gut microbiome of 26 SFTS patients between 20 health controls using the Illumina MiSeq sequencing platform. Reduced gut microbiota diversity and dramatic shifts of fecal microbial composition in SFTS patients were observed compared with health controls. In the intestinal microbial of SFTS patients, the Lachnospiraceae and Ruminococcaceae which could produce short-chain fatty acids were clearly dropped compared with health people, meanwhile, Sutterella which have anti-inflammation properties were reduced too. On the contrary, some common opportunistic pathogens like Enterococcus and Streptococcus and endotoxin-producing bacteria Escherichia which could rise the risk of infections were increased in SFTS patients than healthy people, in addition lactate-producing bacteria Lactobacillaceae also significantly increased in SFTS patients. In addition, research findings on the correlation between gut microbiota and biochemical data found that the changes of gut microbiota of SFTS patients were closely associated with clinical symptoms, key serum enzymes, infection and mortality. These alterations of gut microbiome in SFTS patients suggest the potential contributions of gut microbial to the pathogenesis of SFTS.
Project description:High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Project description:High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Project description:Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Project description:Alzheimer's disease (AD) is the most common form of dementia. However, the etiopathogenesis of this devastating disease is not fully understood. Recent studies in rodents suggest that alterations in the gut microbiome may contribute to amyloid deposition, yet the microbial communities associated with AD have not been characterized in humans. Towards this end, we characterized the bacterial taxonomic composition of fecal samples from participants with and without a diagnosis of dementia due to AD. Our analyses revealed that the gut microbiome of AD participants has decreased microbial diversity and is compositionally distinct from control age- and sex-matched individuals. We identified phylum- through genus-wide differences in bacterial abundance including decreased Firmicutes, increased Bacteroidetes, and decreased Bifidobacterium in the microbiome of AD participants. Furthermore, we observed correlations between levels of differentially abundant genera and cerebrospinal fluid (CSF) biomarkers of AD. These findings add AD to the growing list of diseases associated with gut microbial alterations, as well as suggest that gut bacterial communities may be a target for therapeutic intervention.
Project description:Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.