Project description:Severe obesity is a major risk for chronic kidney disease (CKD). Early detection and careful monitoring of renal function are critical for the prevention of CKD during obesity, since biopsies are not performed in patients with CKD and diagnosis is dependent on the assessment of clinical parameters. To explore whether distinct lipid and metabolic signatures in obesity may signify early stages of pathogenesis toward CKD, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) analyses were performed in the serum and the urine of severely obese patients with and without CKD. Moreover, the impact of bariatric surgery (BS) in lipid and metabolic signature was also studied, through LC-MS and GC-HRAM-MS analyses in the serum and urine of patients with severe obesity and CKD before and after undergoing BS. Regarding patients with severe obesity and CKD compared to severely obese patients without CKD, serum lipidome analysis revealed significant differences in lipid signature. Furthermore, serum metabolomics profile revealed significant changes in specific amino acids, with isoleucine and tyrosine, increased in CKD patients compared with patients without CKD. LC-MS and GC-HRAM-MS analysis in serum of patients with severe obesity and CKD after BS showed downregulation of levels of triglycerides (TGs) and diglycerides (DGs) as well as a decrease in branched-chain amino acid (BCAA), lysine, threonine, proline, and serine. In addition, BS removed most of the correlations in CKD patients against biochemical parameters related to kidney dysfunction. Concerning urine analysis, hippuric acid, valine and glutamine were significantly decreased in urine from CKD patients after surgery. Interestingly, bariatric surgery did not restore all the lipid species, some of them decreased, hence drawing attention to them as potential targets for early diagnosis or therapeutic intervention. Results obtained in this study would justify the use of comprehensive mass spectrometry-based lipidomics to measure other lipids aside from conventional lipid profiles and to validate possible early markers of risk of CKD in patients with severe obesity.
Project description:Chronic kidney disease (CKD) represents a significant global health burden. Currently employed CKD biomarkers are influenced by various factors and lack accuracy in reflecting early-stage renal fibrosis severity. Consequently, there is an urgent need for the identification of early, noninvasive CKD biomarkers. Urine, easily collectible and kidney-derived, has demonstrated potential as a diagnostic source for various kidney diseases by leveraging its RNA content. To address this, we obtained RNA-seq data pertaining to urinary RNAs from both CKD patients and healthy controls via the Gene Expression Omnibus database (GEO). The DEseq2 software was utilized to identify differentially expressed RNAs (DE-RNAs). To evaluate the overall accuracy of these DE-RNAs in urine, we performed Receiver Operating Characteristic analysis (ROC). Selected urinary RNAs were subsequently validated using reverse-transcription quantitative real-time Polymerase Chain Reaction (qRT-PCR) in conjunction with ROC analysis. Computational and experimental analyses revealed significant increases in miR-542-5p, miR-33b-5p, miR-190a-3p, miR-507, and CSAG4 within the urine of CKD patients, exhibiting high AUC values. In conclusion, our findings suggest that urinary RNAs hold promise as diagnostic biomarkers for CKD.
Project description:BACKGROUND:Urinary miRNAs may potentially serve as noninvasive biomarkers in various kidney diseases to reflect disease activity, severity and progression, especially those correlated with the pathogenesis of kidney diseases. This study demonstrates that urinary miR-196a, a kidney-enriched miRNA, can predict progression of chronic kidney disease (CKD). METHODS:Focal segmental glomerulosclerosis (FSGS) cohorts were used as the representative example of CKD. First, correlation of miR-196a with disease activity was analyzed using paired urine and plasma samples from FSGS patients with nephrotic-range proteinuria (FSGS-A), complete remission (FSGS-CR) and normal controls (NCs). Then, the value of urinary miR-196a in predicting disease progression was validated using another cohort of 231 FSGS patients who were followed-up until over 36 months or reaching end-stage renal disease (ESRD). MiR-196a levels were analyzed by quantitative reverse transcription-polymerase chain reaction. RESULTS:The results showed that urinary miR-196a significantly increased in FSGS-A compared with FSGS-CR and NCs, clearly distinguishing FSGS-A from FSGS-CR and NCs, whereas plasma miR-196a showed no difference among these groups. Moreover, urinary miR-196a, which was associated with proteinuria, estimated glomerular filtration rate (eGFR), interstitial fibrosis and tubular atrophy, significantly increased in patients progressed to ESRD compared to those not. Furthermore, patients with higher urinary miR-196a displayed poorer renal survival than those with lower urinary miR-196a. Multivariate Cox analysis confirmed urinary miR-196a as an independent risk factor for FSGS progression after adjusting for age, sex, proteinuria and eGFR. Prediction accuracy of ESRD was significantly improved by combining urinary miR-196a with other indicators including eGFR and proteinuria. CONCLUSION:Urinary miR-196a may serve as a biomarker for predicting CKD progression.
Project description:Background and objectivesObesity and metabolic syndrome (MS) increase the risk of cardiovascular disease (CVD), chronic kidney disease (CKD), and all-cause mortality. Serum cystatin C (S-CysC), a marker of GFR, has been shown to be associated with CVD and CKD. This study was designed to elucidate the association of urinary CysC (U-CysC), a marker of renal tubular dysfunction, with CVD and CKD risk factors in patients with obesity and MS.Design, setting, participants, & measurementsThe U-CysC-creatinine ratio (UCCR) was examined in 343 Japanese obese outpatients enrolled in the multi-centered Japan Obesity and Metabolic Syndrome Study.ResultsUCCR was positively correlated with urine albumin-creatinine ratio (UACR) and S-CysC and negatively correlated with estimated GFR (eGFR). Among obese patients, UCCR was significantly higher in MS patients than in non-MS patients. UCCR had significant correlations with the number of components of MS and arterial stiffness, all of which are CVD predictors, similarly to UACR (P<0.05). Interestingly, diet- and exercise-induced weight reduction for 3 months significantly decreased only UCCR among all of the renal markers examined (P<0.01), in parallel with the decrease in BMI, HbA1c, and arterial stiffness, suggesting the beneficial effect of weight reduction on renal tubular dysfunction.ConclusionsThis study demonstrates that UCCR is significantly associated with renal dysfunction, the severity of MS, arterial stiffness, and weight change in obese patients. The data of this study suggest that U-CysC could serve as a CVD and CKD risk factor in patients with obesity and MS.
Project description:Summary Congenital disorders characterized by the quantitative and qualitative reduction in the number of functional nephrons are the primary cause of chronic kidney disease (CKD) in children. We aimed to describe the alteration of urinary extracellular vesicles (uEVs) associated with decreased renal function during childhood. By nanoparticle tracking analysis and quantitative proteomics, we identified differentially expressed proteins in uEVs in bilateral renal hypoplasia, which is characterized by a congenitally reduced number of nephrons. This expression signature of uEVs reflected decreased renal function in CKD patients by congenital anomalies of the kidney and urinary tract or ciliopathy. As a proof-of-concept, we constructed a prototype ELISA system that enabled the isolation of uEVs and quantitation of expression of molecules representing the signature. The system identified decreased renal function even in its early stage. The uEVs signature could pave the way for non-invasive methods that can complement existing testing methods for diagnosing kidney diseases. Graphical abstract Highlights • Urinary extracellular vesicles (uEVs) are altered in chronic kidney disease (CKD)• Characteristic expression signatures associated with childhood CKD are identified• An ELISA utilizing the signature detected decreased renal function• uEVs signature has potential in diagnosing kidney diseases Health sciences; Nephrology; Biomolecules
Project description:Objective The intrarenal renin-angiotensin system (RAS) is activated in patients with chronic kidney disease (CKD), and urinary angiotensinogen (AGT) levels, a surrogate marker of the intrarenal RAS activation, are associated with blood pressure (BP) and urinary albumin excretion. In addition, it has been shown that changes in urinary AGT levels correlate with annual changes in the estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes and that elevated levels of urinary AGT in type 2 diabetic patients with albuminuria are a high-risk factor for worsening renal and cardiovascular complications. However, whether or not baseline urinary AGT levels predict deterioration of the kidney function in all patients with CKD is unclear. Methods We recruited 62 patients with CKD whose eGFR was >15 mL/min/1.73 m2. We performed 24-hour ambulatory BP monitoring at 30-min intervals and daily urinary collection to examine the urinary AGT levels and albumin excretion and measured the levels of plasma angiotensin II (Ang II), a surrogate marker of circulating RAS. In addition, annual changes in the eGFR were followed up for 3.4±1.5 years. Results Annual changes in the eGFR were significantly and negatively associated with urinary AGT levels (r=-0.31, p=0.015) as well as the age, systolic BP, and urinary albumin levels. In contrast, annual changes in the eGFR were not correlated with plasma Ang II levels. Furthermore, when dividing patients into quartiles according to urinary AGT levels, patients with the highest urinary AGT levels showed a progressive decline in the eGFR. Conclusion These results suggest that elevated baseline urinary AGT levels can predict renal dysfunction in patients with CKD.
Project description:While hypothyroidism increases serum creatinine (Cr) levels, it is uncertain whether the elevation is mediated via a decline in the glomerular filtration rate (GFR) or the reflection of enhanced Cr production from the muscles or both. In the present study, we explored an association between urinary Cr excretion rate (CER) and hypothyroidism. A total of 553 patients with chronic kidney disease were enrolled in a cross-sectional study. Multiple linear regression analysis was performed to explore the association between hypothyroidism and urinary CER. The mean urinary CER was 1.01 ± 0.38 g/day and 121 patients (22%) had hypothyroidism. The multiple linear regression analysis revealed explanatory variables with urinary CER, including age, sex, body mass index, 24 h Cr clearance (24hrCcr), and albumin while hypothyroidism was not considered an independent explanatory variable. In addition, scatter plot analysis with regression fit line representing the association between estimated GFR calculated using s-Cr (eGFRcre) and 24hrCcr revealed that eGFRcre and 24hrCcr had strong correlations with each other in hypothyroid patients as well as euthyroid patients. Collectively, hypothyroidism was not considered an independent explanatory variable for urinary CER in the present study and eGFRcre is a useful marker to evaluate kidney function regardless of the presence of hypothyroidism.
Project description:Current guidelines recommend under 2 g/day sodium intake in chronic kidney disease, but there are a few studies relating sodium intake to long-term outcomes. Here we evaluated the association of mean baseline 24-h urinary sodium excretion with kidney failure and a composite outcome of kidney failure or all-cause mortality using Cox regression in 840 participants enrolled in the Modification of Diet in Renal Disease Study. Mean 24-h urinary sodium excretion was 3.46 g/day. Kidney failure developed in 617 participants, and the composite outcome was reached in 723. In the primary analyses, there was no association between 24-h urine sodium and kidney failure (HR 0.99 (95% CI 0.91-1.08)) nor on the composite outcome (HR 1.01 (95% CI 0.93-1.09)), each per 1 g/day higher urine sodium. In exploratory analyses, there was a significant interaction of baseline proteinuria and sodium excretion with kidney failure. Using a two-slope model, when urine sodium was under 3 g/day, higher urine sodium was associated with increased risk of kidney failure in those with baseline proteinuria under 1 g/day and with lower risk of kidney failure in those with baseline proteinuria of ⩾ 1 g/day. There was no association between urine sodium and kidney failure when urine sodium was ⩾ 3 g/day. Results were consistent using first baseline and time-dependent urinary sodium excretion. Thus, we noted no association of urine sodium with kidney failure. Results of the exploratory analyses need to be verified in additional studies and the mechanism explored.
Project description:Hypertension and chronic kidney disease (CKD) are serious interrelated public health problems. Despite the monitoring and control of high blood pressure, symptoms of CKD are not usually apparent in its early stages. Previously, we reported the utility of urinary vanin-1 as an early biomarker of kidney injury in spontaneously hypertensive rats, but it remains unknown whether urinary vanin-1 is associated with CKD in humans. In this study, we estimated associations between urinary vanin-1 and parameters of kidney function in a cross-sectional study of hypertensive patients. We measured concentrations of vanin-1 using spot urine from 147 adult hypertensive patients (mean age, 72.8 years; 39.5% women). Patients were divided into 2 groups based on the median of the estimated glomerular filtration rate (eGFR). The group with eGFR < 60 mL/min per 1.73 m2 showed significantly higher levels of urinary vanin-1 than those with eGFR ≥ 60 mL/min per 1.73 m2. On univariate analysis, urinary vanin-1 as well as neutrophil gelatinase-associated lipocalin (NGAL) showed significant negative correlations with eGFR; however, multivariate analysis revealed that urinary vanin-1, but not NGAL, significantly correlated with eGFR. In addition, urinary vanin-1 had a significant positive correlation with the urinary protein-to-creatinine ratio (UPCR) (r = 0.21; P = .021) and albumin-to-creatinine ratio (UACR) (r = 0.61; P < .01). In conclusion, urinary vanin-1 is associated with lower eGFR and higher UPCR and UACR, and might be a potential marker of decreased kidney function in hypertensive patients. Further studies are needed to confirm these findings.
Project description:Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes with significant attributable morbidity and mortality. The disturbing trend of increasing incidence and prevalence of these clinical disorders highlights the urgent need for better understanding of the underlying mechanisms that are involved in pathogenesis of these conditions. Lymphangiogenesis and its involvement in various inflammatory conditions is increasingly recognized while its role in AKI and CKD remains to be fully elucidated. Here, we studied lymphangiogenesis in three models of kidney injury. Our results demonstrate that the main ligands for lymphangiogenesis, VEGF-C and VEGF-D, are abundantly present in tubules at baseline conditions and the expression pattern of these ligands is significantly altered following injury. In addition, we show that both of these ligands increase in serum and urine post-injury and suggest that such increment may serve as novel urinary biomarkers of AKI as well as in progression of kidney disease. We also provide evidence that irrespective of the nature of initial insult, lymphangiogenic pathways are rapidly and robustly induced as evidenced by higher expression of lymphatic markers within the kidney.