Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. Recently, disorders of metabolism are thought to be the center of many diseases such as OPLL. Advanced glycation end product (AGE) are accumulated in many extracellular matrixes such as ligament fibers, and it can functions as cellular signal through its receptor (RAGE), contributing to various events such as atherosclerosis or oxidative stress. However, its role in OPLL formation is not yet known. Therefore, we performed high-through-put RNA sequencing on primary posterior longitudinal ligament cells treated with different doses of AGEs (1µM, 5µM and negative control), with or without BMP2 (1µM). mRNA profiles of Primary human posterior longitudinal ligament cells stimulated with various stimuli (Control, 1µM AGE-BSA, 5µM AGE-BSA, 1µM AGE-BSA with BMP2, 5µM AGE-BSA with BMP2) were generated by deep sequencing on Ion Proton
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:The neuromuscular junction (NMJ) is a specialized tripartite synapse composed of the motor axon terminal, covered by perisynaptic Schwann cells (PSCs), and the muscle fibre, separated by a basal lamina. It is exposed to different kind of injures such as mechanical traumas, pathogens including neurotoxins, and neuromuscular diseases such as amyotrophic lateral sclerosis and immune-mediated disorders, and has retained throughout vertebrate evolution an intrinsic ability for repair and regeneration, at variance from central synapses1. Following peripheral nerve injury, an intense but poorly defined crosstalk takes place at the NMJ among its components, functional to nerve terminal regeneration. To identify crucial factors released by PSCs and the muscle to induce nerve regrowth, we performed a transcriptome analysis of the NMJ at different time points after injection of -latrotoxin, a presynaptic neurotoxin isolated from the venom of the black widow spider. This toxin is a simple and controlled method to induce an acute, localized and reversible nerve terminal degeneration not blurred by inflammation, and can help to identify molecules involved in the intra- and inter-cellular signalling governing NMJ regeneration.
Project description:ChIP-Seq analyses of GR and PPARa occupancy in mouse E14.5 fetal liver BFU-E cells untreated or treated by DEX with or without GW7647 ChIP-Seq on GR and PPAR alpha in purified 10^7 mouse BFU-E cells purified from E14.5 fetal livers with or without treatment of Dexamethasone and/or GW7647
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In order to identify how MnTE-2-PyP affects p300 association to chromatin genome-wide, we performed a p300 chromatin Immunoprecipitation assay followed by Next Generation Sequencing on PC3 cells treated with or without MnTE-2-PyP one hour post-irradiation (Figure 3A). Based on the called peaks near genes, we predicted that HIF-1βand CREB transcription factors were associating DNA less in the presence of MnTE-2-PyP. DNA was ChIP-Fixed from Pc3 cells treated with 20 Gy radiation and with and without T2E drug. There are 2 biological replicates of PC3 untreated cells and 3 biological replicates of PC3 cells treated with MnTE-2-PyP. There are two corresponding input samples for the biological replicates.