Project description:Background Histidyl dipeptides such as carnosine are present in a micromolar to millimolar range in mammalian hearts. These dipeptides facilitate glycolysis by proton buffering. They form conjugates with reactive aldehydes, such as acrolein, and attenuate myocardial ischemia-reperfusion injury. Although these dipeptides exhibit multifunctional properties, a composite understanding of their role in the myocardium is lacking. Methods and Results To identify histidyl dipeptide-mediated responses in the heart, we used an integrated triomics approach, which involved genome-wide RNA sequencing, global proteomics, and unbiased metabolomics to identify the effects of cardiospecific transgenic overexpression of the carnosine synthesizing enzyme, carnosine synthase (Carns), in mice. Our result showed that higher myocardial levels of histidyl dipeptides were associated with extensive changes in the levels of several microRNAs, which target the expression of contractile proteins, β-fatty acid oxidation, and citric acid cycle (TCA) enzymes. Global proteomic analysis showed enrichment in the expression of contractile proteins, enzymes of β-fatty acid oxidation, and the TCA in the Carns transgenic heart. Under aerobic conditions, the Carns transgenic hearts had lower levels of short- and long-chain fatty acids as well as the TCA intermediate-succinic acid; whereas, under ischemic conditions, the accumulation of fatty acids and TCA intermediates was significantly attenuated. Integration of multiple data sets suggested that β-fatty acid oxidation and TCA pathways exhibit correlative changes in the Carns transgenic hearts at all 3 levels. Conclusions Taken together, these findings reveal a central role of histidyl dipeptides in coordinated regulation of myocardial structure, function, and energetics.
Project description:This study using a system biology approach of transcriptomics, proteomics and metabolomics, we elucidated the role of endogenous histidyl dipeptides on cellular pathways and myocardial metabolism. Our multi-omics approach for the first-time unravels the landscape of genetic, proteomic, and metabolic changes influenced by histidyl di peptides.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. Conclusion: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content.
Project description:Changes in cellular metabolism contribute to the development and progression of tumors, and can render tumors vulnerable to interventions. However, studies of human cancer metabolism remain limited due to technical challenges of detecting and quantifying small molecules, the highly interconnected nature of metabolic pathways, and the lack of designated tools to analyze and integrate metabolomics with other âomics data. Our study generates the largest comprehensive metabolomics dataset on a single cancer type, and provides a significant advance in integration of metabolomics with sequencing data. Our results highlight the massive re-organization of cellular metabolism as tumors progress and acquire more aggressive features. The results of our work are made available through an interactive public data portal for cancer research community. 10 RNA samples from human ccRCC tumors analyzed from the high glutathione cluster
Project description:Single-driver molecular events specific to the metabolic colorectal cancer (CRC) have not been clearly elucidated. Herein, we identified 12 functional miRNAs linked to activated metabolism by integrating multi-omics features in metabolic CRC. These miRNAs exhibited significantly enriched CRC driver miRNAs, significant impacts on CRC cell growth and significantly correlated metabolites. Importantly, miR-20a is minimally expressed in normal colorectal tissues but highly expressed in metabolic CRC, suggesting the potential therapeutic target. Bioinformatics analyses further revealed miR-20a as the most powerful determinant that regulates a cascade of dysregulated events, including Wnt signaling pathway, core enzymes involved in FA metabolism program and triacylglycerol abundances. In vitro assays demonstrated that elevated miR-20a up-regulated FA synthesis enzymes via Wnt/β-catenin signaling, and finally promoted proliferative and migration of metabolic CRC cells. Overall, our study revealed that miR-20a promoted progression of metabolic CRC by regulating FA metabolism and served as a potential target for preventing tumor metastasis.
Project description:Abnormal tumor cell metabolism is a consequence of alterations in signaling pathways that provide critical selective advantage to cancer cells. However, a systematic characterization of the metabolic and signaling pathways altered in cancer stem-like cells (CSCs) is currently lacking. Using nuclear magnetic resonance and mass spectrometry, we profiled the whole-cell metabolites of a pair of parental (P-231) and stem-like cancer cells (S-231), and then integrated with whole transcriptome profiles. We identified elevated NAAD+ in S-231 along with a coordinated increased expression of genes in Wnt/calcium signaling pathway, reflecting the correlation between metabolic reprogramming and altered signaling pathways. The expression of CD38 and ALP, upstream NAAD+ regulatory enzymes, was oppositely regulated between P- and S-231; high CD38 strongly correlated with NAADP in P-231 while high ALP with NAAD+ levels in S-231. Antagonizing Wnt activity by dnTCF4 transfection reversed the levels of NAAD+ and ALP expression in S-231. Of note, elevated NAAD+ caused a decrease of cytosolic Ca2+ levels preventing calcium-induced apoptosis in nutrient-deprived conditions. Reprograming of NAD+ metabolic pathway instigated by Wnt signaling prevented cytosolic Ca2+ overload thereby inhibiting calcium-induced apoptosis in S-231. These results suggest that "oncometabolites" resulting from cross talk between the deranged core cancer signaling pathway and metabolic network provide a selective advantage to CSCs.
Project description:BackgroundThe gastrointestinal tract (GIT) microbiome of ruminants and its metabolic repercussions vastly influence host metabolism and growth. However, a complete understanding of the bidirectional interactions that occur across the host-microbiome axis remains elusive, particularly during the critical development stages at early life. Here, we present an integrative multi-omics approach that simultaneously resolved the taxonomic and functional attributes of microbiota from five GIT regions as well as the metabolic features of the liver, muscle, urine, and serum in sika deer (Cervus nippon) across three key early life stages.ResultsWithin the host, analysis of metabolites over time in serum, urine, and muscle (longissimus lumborum) showed that changes in the fatty acid profile were concurrent with gains in body weight. Additional host transcriptomic and metabolomic analysis revealed that fatty acid β-oxidation and metabolism of tryptophan and branched chain amino acids play important roles in regulating hepatic metabolism. Across the varying regions of the GIT, we demonstrated that a complex and variable community of bacteria, viruses, and archaea colonized the GIT soon after birth, whereas microbial succession was driven by the cooperative networks of hub populations. Furthermore, GIT volatile fatty acid concentrations were marked by increased microbial metabolic pathway abundances linked to mannose (rumen) and amino acids (colon) metabolism. Significant functional shifts were also revealed across varying GIT tissues, which were dominated by host fatty acid metabolism associated with reactive oxygen species in the rumen epithelium, and the intensive immune response in both small and large intestine. Finally, we reveal a possible contributing role of necroptosis and apoptosis in enhancing ileum and colon epithelium development, respectively.ConclusionsOur findings provide a comprehensive view for the involved mechanisms in the context of GIT microbiome and ruminant metabolic growth at early life. Video Abstract.
Project description:During late gestation, the fetal heart relies primarily on glucose and lactate to support rapid growth and development. While numerous studies describe changes in heart metabolism a few weeks after birth to preferentially utilize fatty acids, little is known about metabolic changes of the heart within the first day of life. Therefore, we used the ovine model of pregnancy to investigate metabolic differences between the near-term fetal and the newborn heart. We observed greater abundance of metabolites involved in butanoate and propanoate metabolism, and glycolysis/gluconeogenesis in the term fetal heart (FDR-corrected p<0.10) and differential expression in these pathways were confirmed with single-sample gene set enrichment analysis (ssGSEA) (FDR-corrected p<0.05). Immediately following birth, newborn hearts displayed enrichment in purine, fatty acid, and glycerophospholipid metabolic pathways, as well as oxidative phosphorylation with significant alterations in lipids and metabolites to support transcriptomic findings. While other studies suggest a switch from carbohydrate metabolism to fatty acid metabolism in the neonatal heart in as early as 2 weeks following birth, our data show that this metabolic switch in the heart begins by the first day of postnatal life. A better understanding of metabolic alterations that occur in the heart following birth may improve treatment of neonates at risk for heart failure.