Functional metabolic molecule were identified as novel therapeutic targets to facilitate gemcitabine treatment against pancreatic cancer (Tumor tissues metabolomics)
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Project description:Lymphangioleiomyomatosis (LAM) is a rare systemic neoplastic disease that exclusively happens in women. Studies focusing on LAM and tuberous sclerosis complex (TSC) have made great progress in understanding the pathogenesis and searching for treatment. The inactive mutation of TSC1 or TSC2 is found in patients with LAM to activate the crucial mammalian target of rapamycin (mTOR) signaling pathway and result in enhanced cell proliferation and migration. However, it does not explain every step of tumorigenesis in LAM. Because cessation of rapamycin would break the stabilization of lung function or improved quality of life and lead to disease recurrent, continued studies on the pathogenesis of LAM are necessary to identify novel targets and new treatment. Researchers have found several aberrant regulations that affect the mTOR pathway such as its upstream or downstream molecules and compensatory pathways in LAM. Some therapeutic targets have been under study in clinical trials. New methods like genome-wide association studies have located a novel gene related to LAM. Herein, we review the current knowledge regarding pathogenesis and treatment of LAM and summarize novel targets of therapeutic potential recently.
Project description:Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Project description:Pancreatic cancer is one of the most challenging cancer types in clinical treatment worldwide. This study aimed to understand the tumorigenesis mechanism and explore potential therapeutic targets for patients with pancreatic cancer. Single-cell data and expression profiles of pancreatic cancer samples and normal tissues from multiple databases were included. Comprehensive bioinformatics analyses were applied to clarify tumor microenvironment and identify key genes involved in cancer development. Immense difference of cell types was shown between tumor and normal samples. Four cell types (B cell_1, B cell_2, cancer cell_3, and CD1C+_B dendritic cell_3) were screened to be significantly associated with prognosis. Three ligand-receptor pairs, including CD74-MIF, CD74-COPA, and CD74-APP, greatly contributed to tumorigenesis. High expression of BUB1 (BUB1 Mitotic Checkpoint Serine/Threonine Kinase) was closely correlated with worse prognosis. CD1C+_B dendritic cell_3 played a key role in tumorigenesis and cancer progression possibly through CD74-MIF. BUB1 can serve as a prognostic biomarker and a therapeutic target for patients with pancreatic cancer. The study provided a novel insight into studying the molecular mechanism of pancreatic cancer development and proposed a potential strategy for exploiting new drugs.
Project description:Atopic dermatitis (AD) is a chronic inflammatory skin disease that significantly impacts quality of life. The pathogenesis of AD is a complex combination of skin barrier dysfunction, type II immune response, and pruritus. Progress in the understanding of the immunological mechanisms of AD has led to the recognition of multiple novel therapeutic targets. For systemic therapy, new biologic agents that target IL-13, IL-22, IL-33, the IL-23/IL-17 axis, and OX40-OX40L are being developed. Binding of type II cytokines to their receptors activates Janus kinase (JAK) and its downstream signal, namely signal transduction and activator of transcription (STAT). JAK inhibitors block the activation of the JAK-STAT pathway, thereby blocking the signaling pathways mediated by type II cytokines. In addition to oral JAK inhibitors, histamine H4 receptor antagonists are under investigation as small-molecule compounds. For topical therapy, JAK inhibitors, aryl hydrocarbon receptor modulators, and phosphodiesterase-4 inhibitors are being approved. Microbiome modulation is also being examined for the treatment of AD. This review outlines current and future directions for novel therapies of AD that are currently being investigated in clinical trials, focusing on their mechanisms of action and efficacy. This supports the accumulation of data on advanced treatments for AD in the new era of precision medicine.
Project description:Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Project description:Serrated adenocarcinoma (SAC) is a tumor recognized by the WHO as a histological subtype accounting for around 9% of colorectal carcinomas. Compared to conventional carcinomas, SACs are characterized by a worse prognosis, weak development of the immune response, an active invasive front and a frequent resistance to targeted therapy due to a high occurrence of KRAS or BRAF mutation. Nonetheless, several high-throughput studies have recently been carried out unveiling the biology of this cancer and identifying potential molecular targets, favoring a future histologically based treatment. This review revises the current evidence, aiming to propose potential molecular targets and specific treatments for this aggressive tumor.
Project description:Pancreatic cancer has one of the highest mortality rates (5-year survival ~9%) among cancers. Pancreatic adenocarcinoma (PAAD) is the most common (>80%) and the most lethal type of pancreatic cancer. A need exists for new approaches to treat pancreatic adenocarcinoma. GPCRs, the largest family of cell-surface receptors and drug targets, account for ~35% of approved drugs. Recent studies have revealed roles for GPCRs in PAAD cells and cells in the tumour micro-environment. This review assesses current information regarding GPCRs in PAAD by summarizing omics data for GPCRs expression in PAAD. The PAAD "GPCRome" includes GPCRs with approved agents, thereby offering potential for their repurposing/repositioning. We then reviewed the evidence for functional roles of specific GPCRs in PAAD. We also highlight gaps in understanding the contribution of GPCRs to PAAD biology and identify several GPCRs that may be novel therapeutic targets for future work in search of GPCR-targeted drugs to treat PAAD tumours.