Ramadan diurnal intermittent fasting is associated with significant plasma metabolomics changes in overweight and obese subjects: A prospective cohort study
Project description:IntroductionDuring the holy month of Ramadan, adult healthy Muslims are mandated to abstain from dawn to sunset, with free eating at night hours that may extend up to 12 h. The current work was designed to investigate the metabolomics changes incurred upon the observance of Ramadan diurnal intermittent fasting (RDIF).MethodsTwenty-five metabolically healthy participants with overweight and obesity (7 females and 18 males, with a mean age of 39.48 ± 10.0 years) were recruited for the study and were followed before and at the end of RDIF month. Dietary, anthropometric, biochemical, and physical activity assessments were performed before and at the end of the fasting month. The metabolomic assay was performed using liquid chromatography-mass spectrometry for the two-time points.Results and discussionMetabolomics assay revealed a significant reduction in a few metabolites. The analysis revealed that 27 metabolites differed significantly (P < 0.05) between pre-and post-RDIF. Among the differentially abundant metabolites, 23 showed a decrease with fasting, these included several amino acids such as aspartame, tryptophan, phenylalanine, histidine, and other metabolites including valeric acid, and cortisol. On the other hand, only four metabolites showed increased levels after RDIF including traumatic acid, 2-pyrrolidinone, PC[18:1(9Z)/18:1(9Z)], and L-sorbose. The MetaboAnalyst® platform reported that the top enriched metabolic pathways included: (1) histidine metabolism; (2) folate biosynthesis (3) phenylalanine, tyrosine, and tryptophan biosynthesis; (4) aminoacyltRNA biosynthesis; (5) caffeine metabolism; (6) vitamin B6 metabolism; and several other pathways relating to lipid metabolisms such as arachidonic acid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. In conclusion, RDIF entails significant changes in various metabolic pathways that reflect different dietary and lifestyle behaviors practiced during the fasting month.
Project description:Aim and backgroundA growing body of evidence supports the impact of intermittent fasting (IF) on normalizing body weight and that the interaction between body genes and environmental factors shapes human susceptibility to developing obesity. FTO gene is one of these genes with metabolic effects related to energy metabolism and body fat deposition. This research examined the changes in FTO gene expression upon Ramadan intermittent fasting (RIF) in a group of metabolically healthy subjects with overweight and obesity.MethodsSixty-three (63) subjects were recruited, of which 57 (17 males and 40 females, mean age 38.4 ± 11.2 years) subjects with overweight and obesity (BMI = 29.89 ± 5.02 kg/m2were recruited and monitored before and at the end of Ramadan month), and 6 healthy subjects with normal BMI (21.4 ± 2.20 kg/m2) recruited only to standardize the reference for normal levels of FTO gene expression. In the two-time points, anthropometric, biochemical, and dietary assessments were undertaken, and FTO gene expression tests were performed using RNA extracted from the whole blood sample.ResultsIn contrast to normal BMI subjects, the relative gene expressions in overweight/obese were significantly decreased at the end of Ramadan (-32.30%, 95% CI-0.052 -0.981) in comparison with the pre-fasting state. Significant reductions were found in body weight, BMI, fat mass, body fat percent, hip circumference, LDL, IL-6, TNF-α (P<0.001), and in waist circumference (P<0.05), whilst HDL and IL-10 significantly increased (P<0.001) at the end of Ramadan in comparison with the pre-fasting levels. Binary logistic regression analysis for genetic expressions showed no significant association between high-energy intake, waist circumference, or obesity and FTO gene expression.ConclusionsRIF is associated with the downregulation of the FTO gene expression in subjects with obesity, and this may explain, at least in part, its favorable metabolic effects. Hence, RIF presumably may entail a protective impact against body weight gain and its adverse metabolic-related derangements in subjects with obesity.
Project description:Eukaryotic cells release the phylogenetically ancient protein acyl coenzyme A binding protein (ACBP, which in humans is encoded by the gene DBI, diazepam binding inhibitor) upon nutrient deprivation. Accordingly, mice that are starved for one to two days and humans that undergo voluntary fasting for one to three weeks manifest an increase in the plasma concentration of ACBP/DBI. Paradoxically, ACBP/DBI levels also increase in obese mice and humans. Since ACBP/DBI stimulates appetite, this latter finding may explain why obesity constitutes a self-perpetuating state. Here, we present a theoretical framework to embed these findings in the mechanisms of weight control, as well as a bioinformatics analysis showing that, irrespective of the human cell or tissue type, one single isoform of ACBP/DBI (ACBP1) is preponderant (~90% of all DBI transcripts, with the sole exception of the testis, where it is ~70%). Based on our knowledge, we conclude that ACBP1 is subjected to a biphasic transcriptional and post-transcriptional regulation, explaining why obesity and fasting both are associated with increased circulating ACBP1 protein levels.
Project description:BackgroundNumerous studies have suggested that fasting plasma glucose (FPG) was associated with the risk of mortality. However, relationship on longitudinal changes of FPG with the risk of mortality remained inconsistent.MethodsWe examined the association of FPG at baseline and its longitudinal changes with risk of mortality based on a cohort study in Yinzhou, China, during 2010-2018. Cox regression models and competing risk models were separately used to examine the association of FPG levels and long-term fluctuation with risk of total and cause-specific mortality.ResultsSubjects who had an impaired fasting glucose or diabetes suffered a higher risk of total mortality than subjects who had a normal fasting glucose (HRs and 95% CIs: 1.17 [1.01-1.35], 1.30 [1.10-1.53], respectively). The HR for total mortality was 1.54 (95% CI: 1.29-1.84) and for cancer mortality was 1.41 (95% CI: 1.04-1.92) in the highest quartile of coefficient of variation of FPG. Trajectory analysis indicated that subjects with a significantly changed FPG suffered a higher risk of total mortality.ConclusionAccording to this cohort study, we found that long-term fluctuation of FPG was significantly associated with the risk of total and cancer mortality. Our findings suggest that long-term fluctuation of FPG could be used as an efficient indicator for predicting the subsequent risk of mortality.
Project description:BackgroundLevels of cortisol, melatonin, ghrelin, and leptin are highly correlated with circadian rhythmicity. The levels of these hormones are affected by sleep, feeding, and general behaviors, and fluctuate with light and dark cycles. During the fasting month of Ramadan, a shift to nighttime eating is expected to affect circadian rhythm hormones and, subsequently, the levels of melatonin, cortisol, ghrelin, and leptin. The present study aimed to examine the effect of diurnal intermittent fasting (DIF) during Ramadan on daytime levels of ghrelin, leptin, melatonin, and cortisol hormones in a group of overweight and obese subjects, and to determine how anthropometric, dietary, and lifestyle changes during the month of Ramadan correlate with these hormonal changes.MethodsFifty-seven overweight and obese male (40) and female (17) subjects were enrolled in this study. Anthropometric measurements, dietary intake, sleep duration, and hormonal levels of serum ghrelin, leptin, melatonin, and salivary cortisol were assessed one week before the start of Ramadan fasting and after 28 days of fasting at fixed times of the day (11:00 am-1:00 pm).ResultsAt the end of Ramadan, serum levels of ghrelin, melatonin, and leptin significantly (P<0.001) decreased, while salivary cortisol did not change compared to the levels assessed in the pre-fasting state.ConclusionsDIF during Ramadan significantly altered serum levels of ghrelin, melatonin, and serum leptin. Further, male sex and anthropometric variables were the most impacting factors on the tested four hormones. Further studies are needed to assess DIF's impact on the circadian rhythmicity of overweight and obese fasting people.
Project description:Background/objectivesEpidemiological studies suggest a link between chromium (Cr) status and cardiovascular disease. Increased urinary excretion of Cr was reported in subjects with diabetes compared with non-diabetic controls and those with non-diabetic insulin resistance. Epigenetic alterations have been linked to the presence of Cr, and microRNA (miRNA) expression has been implicated in the pathogenesis of metabolic diseases and cardiovascular diseases (CVDs). We investigated the association between Cr excretion and miRNA expression in leukocytes from obese subjects. We also examined the relationship between altered miRNA expression and selected clinical parameters to further investigate mechanisms linking Cr to metabolic diseases and CVDs.Subjects/methodsWe analyzed urinary Cr in 90 Italian subjects using inductively coupled plasma-mass spectrometry. Peripheral blood miRNA levels were screened with TaqMan Low-Density Array Human MicroRNA A. Cr level-associated expression of miRNAs was detected with multivariate regression analyses, and the top 10 candidate miRNAs were selected for validation. We also used multivariate regression analyses to assess possible associations between validated miRNAs and glycated hemoglobin (A1c) and blood pressure (BP). The validated miRNAs were further investigated by functional analysis with Ingenuity Pathway Analysis software.ResultsUrinary Cr levels (mean: 0.35 μg/l; s.d.=0.24) ranged from 0.05 to 1.27 μg/l. In the screening phase, 43 miRNAs were negatively associated with Cr. Of the top 10 miRNAs selected for validation, nine (miR-451, miR-301, miR-15b, miR-21, miR-26a, miR-362-3p, miR-182, miR-183 and miR-486-3p) were downregulated in association with Cr (P-false discovery rate (FDR)<0.10). miR-451 expression was associated with A1c (β=-0.06; P=0.0416), whereas miR-486-3p expression was associated both with diastolic (β=2.1; P=0.004) and systolic BP (β=3.3; P=0.003).ConclusionsThese results indicate that miR-451 and miR-486-3p are involved in the link between Cr levels and metabolic diseases and CVDs.
Project description:Little is known about the longitudinal association between fasting glucose (FG) and the diurnal cortisol profile among those with normal fasting glucose (NFG), impaired fasting glucose (IFG) and diabetes. To assess the temporality of the relationship between cortisol and glucose, we examined the association of: A) change (Δ) in diurnal cortisol curve features with ΔFG; B) prior annual percent change in FG with diurnal cortisol curve features; and C) baseline cortisol curve features with ΔFG over 6 years among participants with NFG, IFG and diabetes in the Multi-Ethnic Study of Atherosclerosis. The main outcome measures were: A) 6-year ΔFG (n = 512); B) diurnal cortisol curve features (wake-up cortisol levels, cortisol awakening response, total area under the curve, overall decline slope and bedtime cortisol) (n = 1275); and C) 6-year ΔFG (n = 700). After full multivariable adjustment among participants with diabetes, each annual percent change increase in wake-up cortisol, total area under the curve (AUC), and overall decline slope was associated with a significant increase in FG over 6 years in all models (all p < 0.05). A 1% prior annual increase in FG was associated with a 2.8 % lower (-2.8 %; 95 % CI: -5.3 % to -0.4 %) bedtime cortisol among participants with NFG at baseline. A 1 % flatter overall decline slope was associated with a 0.19 % increase in subsequent annual % change in FG over 6 years among participants with diabetes. Among participants with diabetes there was a positive association of change in wake-up cortisol, total AUC and overall decline slope with change in FG. Baseline overall decline slope was positively associated with change in FG among the baseline diabetes group. These results suggest a detrimental role of cortisol contributing to glycemia among individuals with diabetes.
Project description:Despite a growing body of research indicating a link between fasting glucose levels and mortality, the relationship between fasting glucose and all-cause and cancer mortality remains inconsistent. In this study, we used Cox regression and restricted cubic spline models to analyze the association and dose-response relationship between fasting plasma glucose levels and all-cause and cancer mortality in a retrospective cohort based on data from the 2015 health check-ups of residents in Quzhou City. After a mean follow-up of 5.31 years for 148,755 study participants, 10,345 deaths occurred, with an all-cause mortality density of 131.09/10,000 person-years, of which 2,845 were cancer deaths, with a cancer mortality density of 36.05/10,000 person-years. There was a "J" shaped dose-response relationship between fasting plasma glucose levels and all-cause and cancer mortality. Relative to normal fasting glucose (NFG), the risk of all-cause mortality (HRs and 95% CIs) in the impaired fasting glucose (IFG) and diabetes mellitus (DM) groups was 1.11 (1.06, 1.16) and 1.43 (1.35, 1.52), respectively, and the risk of cancer mortality in the DM group was 1.22 (1.09, 1.37). In this cohort study, we found that fasting plasma glucose levels were significantly associated with the risk of all-cause and cancer mortality.
Project description:BackgroundType 2 diabetes has been associated with increased incidence of atrial fibrillation (AF) and cardiovascular disease. Controversy remains regarding the role of insulin in the epidemiology of AF risk. The aim of the present study was to study the association between fasting plasma insulin (FPI) and incidence of AF, as well as any effect modification by fasting blood glucose (FBG) or 2 h post-load blood glucose and body mass index (BMI).MethodsThe study population consisted of 6052 men and 1014 women followed for an average of 26.2 years. There were 983 cases of incident AF. Analysis was performed using Cox regression and competing risks regression approaches. The population was analysed as a whole, and by subgroups according to glucose levels and BMI.ResultsAfter adjustment for age, height, weight, systolic blood pressure and smoking there was a significant inverse association between FPI and AF (hazard ratio; HR) for 4th vs. 1st quartile: 0.69 (95% confidence interval (CI): 0.57-0.83, p < 0.0001) in the cohort as a whole. Among men the corresponding values were HR 0.64 (95% CI 0.52-0.78, p < 0.001) and among women HR 1.16 (95% CI 0.69-1.93, p = 0.58); p-value for interaction 0.06. The protective effects of insulin tended to be weaker in subjects with elevated fasting glucose, implying that the relation between FPI and incident AF could be dependent on the status of individual's glucose metabolism.ConclusionsHigh levels of FPI are associated with lower risk of incident AF in a middle-aged population with a long follow-up.
Project description:Scientists currently use only a small portion of the information contained in the blood metabolome. The identification of metabolites is a huge challenge because only highly abundant and well-separated compounds can be easily identified in complex samples. However, new approaches that enhance the identification of compounds have emerged; among them, the identification of compounds based on their involvement in a particular biological context is a recent development. In this work, this approach was first applied to identify metabolites in complex samples and, together with metabolite set enrichment analysis, was used for the evaluation of blood plasma from obese patients. The proposed approach was found to provide a statistically sound overview of the biochemical pathways, thus presenting additional information on obesity. Obesity progression was demonstrated to be accompanied by marked alterations in steroidogenesis, androstenedione metabolism, and androgen and estrogen metabolism. The findings of this study suggest that the workflow used for blood analysis is sufficient to demonstrate obesity at the biochemical pathway level as well as to monitor the response to treatment. This workflow is also expected to be suitable for studying other metabolic diseases.