Project description:Omics analyses are commonly used for identifying pathways and genes responsible for physiologic and pathologic processes. Though sex is considered a biological variable in rigorous assessments of pulmonary responses to oxidant exposures, the contribution of the murine strain is largely ignored. This study utilized an unbiased integrated assessment of high-resolution metabolomic profiling and RNA-sequencing to explore sex- and strain-dependent pathways in adult mouse lungs. The results indicated that strain exhibited a greater influence than sex on pathways associated with inflammatory and oxidant/antioxidant responses and that interaction metabolites more closely resembled those identified as differentially expressed by strain. Metabolite analyses revealed that the components of the glutathione antioxidant pathway were different between strains, specifically in the formation of mixed disulfides. Additionally, selenium metabolites such as selenohomocystiene and selenocystathionine were similarly differentially expressed. Transcriptomic analysis revealed similar findings, as evidenced by differences in glutathione peroxidase, peroxiredoxin, and the inflammatory transcription factors RelA and Jun. In summary, an multi-omics integrated approach identified that murine strain disproportionately impacts baseline expression of antioxidant systems in lung tissues. We speculate that strain-dependent differences contribute to discrepant pulmonary responses in preclincal mouse models, with deleterious effects on clinical translation.
Project description:Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: male and female hearts show the greatest sexual dimorphism, both qualitatively and quantitatively. Finally, multivariate analysis confirmed the influence of sex on the metabolomics profiling. Our data demonstrate that the metabolomics approach together with a multivariate approach can capture the dynamics of physiological and pathological states, which are essential for explaining the basis of the sex differences observed in physiological and pathological conditions.
Project description:Alfalfa sprouts are among the most nutritionally rich foods, and light exposure is a critical factor in determining their biomass and quality. However, detailed metabolic and molecular differences between yellow and green alfalfa sprouts remain unclear. In this study, comprehensive metabolomic and transcriptomic analyses were integrated to evaluate the nutrient composition of alfalfa sprouts during germination with or without light exposure. Differentially expressed genes and differentially accumulated metabolites in green and yellow alfalfa sprouts were significantly enriched in secondary metabolic pathways, such as the isoflavonoid biosynthesis pathway. Green alfalfa sprouts contained a wide variety of lipids, flavonoids, phenolic acids, and terpenoids, among which the top three upregulated were calycosin, methyl gallate, and epicatechin 3-gallate, whereas yellow alfalfa sprouts contained relatively more isoquercitrin. These results provide new insights into the nutritional value and composition of alfalfa sprouts under different germination regimes.
Project description:Cassava is a significant food security crop in several developing countries. Metabolites in cassava roots provide numerous nutrients essential for human health. Exploiting the diversity of nutritional ingredients present in cassavas is vital for improving its nutritional value. To address this problem, root metabolomes of three cassava cultivars with white-flesh, light-yellow-flesh and yellow-flesh were comprehensively measured, respectively. A total of 508 metabolites were detected in cassava roots, including 300 primary metabolites and 185 secondary metabolites. There were 22.6% to 34.1% metabolites exhibiting significant variations among the three cassava cultivars. The light-yellow-flesh cassava contained higher contents of secondary metabolites, especially flavone, phenylpropanoids and alkaloids, and lower contents of primary metabolites except lipids, alcohols, vitamins and derivatives. Compared with light-yellow-flesh cassava, the yellow-flesh cassava contained higher contents of amino acid and derivatives, but lower contents of phenylpropanoids, nucleotide and derivates. White-flesh cassava contained higher contents of primary metabolites, especially amino acid and derivatives, but lower contents of secondary metabolites except flavonoid and indole derivatives. Transcriptome analyses were parallelly performed to decipher the potential mechanisms regulating the accumulations of related metabolites. Several pathways were both enriched by differentially expressed genes and differentially accumulated metabolites, supporting that metabolisms of these metabolites were regulated at transcriptional level. These results expand the knowledge on metabolite compositions in cassava roots and provide substantial information for genetic improvement of cassavas with high nutritional values.
Project description:Blueberry is a high-quality fruit tree with significant nutritional and economic value, but the intricate mechanism of sugar accumulation in its fruit remains unclear. In this study, the ripe fruits of blueberry cultivars 'Anna' and 'Misty' were utilized as experimental materials, and physiological and multi-omics methodologies were applied to analyze the regulatory mechanisms of the difference in sugar content between them. The results demonstrated that the 'Anna' fruit was smaller and had less hardness than the 'Misty' fruit, as well as higher sugar content, antioxidant capability, and lower active substance content. A total of 7067 differentially expressed genes (DEGs) (3674 up-regulated and 3393 down-regulated) and 140 differentially abundant metabolites (DAMs) (82 up-regulated and 58 down-regulated) were identified between the fruits of the two cultivars. According to KEGG analysis, DEGs were primarily abundant in phenylpropanoid synthesis and hormone signal transduction pathways, whereas DAMs were primarily enriched in ascorbate and aldarate metabolism, phenylpropanoid biosynthesis, and the pentose phosphate pathway. A combined multi-omics study showed that 116 DEGs and 3 DAMs in starch and sucrose metabolism (48 DEGs and 1 DAM), glycolysis and gluconeogenesis (54 DEGs and 1 DAM), and the pentose phosphate pathway (14 DEGs and 1 DAM) were significantly enriched. These findings suggest that blueberries predominantly increase sugar accumulation by activating carbon metabolism network pathways. Moreover, we identified critical transcription factors linked to the sugar response. This study presents new understandings regarding the molecular mechanisms underlying blueberry sugar accumulation and will be helpful in improving blueberry fruit quality through breeding.
Project description:Susceptibility and progression of lung disease, as well as response to treatment, often differ by sex, yet the metabolic mechanisms driving these sex-specific differences are still poorly understood. Women with chronic obstructive pulmonary disease (COPD) have less emphysema and more small airway disease on average than men, though these differences become less pronounced with more severe airflow limitation. While small studies of targeted metabolites have identified compounds differing by sex and COPD status, the sex-specific effect of COPD on systemic metabolism has yet to be interrogated. Significant sex differences were observed in 9 of the 11 modules identified in COPDGene. Sex-specific associations by COPD status and emphysema were observed in 3 modules for each phenotype. Sex stratified individual metabolite associations with COPD demonstrated male-specific associations in sphingomyelins and female-specific associations in acyl carnitines and phosphatidylethanolamines. There was high preservation of module assignments in SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study) and similar female-specific shift in acyl carnitines. Several COPD associated metabolites differed by sex. Acyl carnitines and sphingomyelins demonstrate sex-specific abundances and may represent important metabolic signatures of sex differences in COPD. Accurately characterizing the sex-specific molecular differences in COPD is vital for personalized diagnostics and therapeutics.
Project description:Anoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.
Project description:Illicium difengpi (Schisandraceae), an endangered medicinal plant endemic to karst areas, is highly tolerant to drought and thus can be used as an ideal material for investigating adaptive mechanism to drought stress. The understanding of the drought tolerance of I. difengpi, especially at the molecular level, is lacking. In the present study, we aimed to clarify the molecular mechanism underlying drought tolerance in endemic I. difengpi plant in karst regions. The response characteristics of transcripts and changes in metabolite abundance of I. difengpi subjected to drought and rehydration were analyzed, the genes and key metabolites responsive to drought and rehydration were screened, and some important biosynthetic and secondary metabolic pathways were identified. A total of 231,784 genes and 632 metabolites were obtained from transcriptome and metabolome analyses, and most of the physiological metabolism in drought-treated I. difengpi plants recovered after rehydration. There were more upregulated genes than downregulated genes under drought and rehydration treatments, and rehydration treatment induced stable expression of 65.25% of genes, indicating that rehydration alleviated drought stress to some extent. Drought and rehydration treatment generated flavonoids, phenolic acids, flavonols, amino acids and their derivatives, as well as metabolites such as saccharides and alcohols in the leaves of I. difengpi plants, which alleviated the injury caused by excessive reactive oxygen species. The integration of transcriptome and metabolome analyses showed that, under drought stress, I. difengpi increased glutathione, flavonoids, polyamines, soluble sugars and amino acids, contributing to cell osmotic potential and antioxidant activity. The results show that the high drought tolerance and recovery after rehydration are the reasons for the normal growth of I. difengpi in karst mountain areas.