Dietary inclusion of nitrite-containing frankfurter exacerbates colorectal cancer pathology, increases oxidative stress, alters metabolism and causes gut dybiosis in APCmin mice
Project description:Colorectal cancer (CRC) is the second most prevelant malignancy in Europe and diet is an important modifiable risk factor. Processed meat consumption, including meats with preservative salts such as sodium nitrite, have been implicated in CRC pathogenesis. This study investigated how the CRC pathology and metabolic status of adenomatous polyposis coli (APC) multiple intestinal neoplasia (min) mice was perturbed following 8 weeks of pork meat consumption. Dietary inclusions (15%) of either nitrite-free pork, nitrite-free sausage, or nitrite-containing sausage (frankfurter) were compared against a parallel control group (100% chow). Comprehensive studies investigated: gastrointestinal tract histology (tumours), aberrant crypt foci (ACF), mucin deplin foci (MDF), lipid peroxidation (urine and serum), faecal microbiota, and serum metabolomics (599 metabolites). After 8 weeks mice consuming the frankfurter diet had 53% more (P = 0.014) gastrointestinal tumours than control, although ACF and MDF did not differ. Urine and serum lipid peroxidation markers were 59% (P = 0.001) and 108% (P = 0.001) higher, respectively in the frankfurter group. Gut dysbiosis was evident in these mice with comparably fewer Bacteriodes and more Firmicutes. Fasting serum levels of trimethylamine N-oxide (TMAO) and numerous triglycerides were elevated. Various serum phosphotidylcholine species were decreased. These results demonstrate that nitrite-containing sausages may exaccerbate the development of CRC pathology in APCMin mice to a greater extent than nitrite-free sausages, and this is associated with greater lipid peroxidation, wide-ranging metabolic alternation and gut dysbiosis.
Project description:Oxidative stress commonly occurs in pig production, which can severely damage the intestinal function of weaned piglets. This study was conducted to investigate the effects of D-galactose with different levels used to induce chronic oxidative stress on growth performance, intestinal morphology and gut microbiota in weaned piglets. The results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily gain and average daily feed intake from the first to the third week. 10 g/kg BW D-galactose increased the concentration of serum MDA at the second and third week. 10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae, while increased the relative abundance of Negativicutes, Selenomonnadales, and Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose for 3 weeks could induce chronic oxidative stress, reduce the growth performance and alter gut microbiota in weaned piglets.
Project description:Acrylamide (AA) has been extensively examined for its potential toxicological effects on humans and animals, but its impacts on gut microbiota and effects on hosts' susceptibility to enteric infection remain elusive. The present study was designed to evaluate the effect of AA on gut microbiota of mice and susceptibility of mice to S. Typhimurium infection. After four weeks' intervention, mice fed with AA exhibited significantly decreased body weight. Meanwhile, 16S rRNA gene sequencing showed reduced relative abundance of Firmicutes and increased abundance of Bacteroidetes in AA-treated mice prior to infection. In addition, we observed high relative abundance of Burkholderiales and Erysipelotrichales, more specifically the genus Sutterella and Allobaculum, respectively, in AA-treated mice before infection. Subsequently, the mice were orally infected with S. Typhimurium. The histological changes, systemic dissemination of S. Typhimurium, and inflammatory responses were examined. Compared to mice fed with normal diet, mice fed AA exhibited higher level of bacterial counts in liver, spleen, and ileum, which was consistent with exacerbated tissue damage determined by histological analyses. In addition, higher expression of pro-inflammaroty cytokines, p-IκBα, and p-P65 and lower mRNA expressions of mucin2, occludin, zo-1, claudin-1, and E-cadherin were detected in AA-treated mice. These findings provide novel insights into the potential health impact of AA consumption and the detailed mechanism for its effect on S. Typhimurium infection merit further exploration.
Project description:Heat-stabilized rice bran (SRB) and cooked navy bean powder (NBP) contain a variety of phytochemicals that are fermented by colonic microbiota and may influence intestinal health. Dietary interventions with these foods should be explored for modulating colorectal cancer risk. A randomized-controlled pilot clinical trial investigated the effects of eating SRB (30 g/day) or cooked navy bean powder (35 g/day) on gut microbiota and metabolites (NCT01929122). Twenty-nine overweight/obese volunteers with a prior history of colorectal cancer consumed a study-provided meal and snack daily for 28 days. Volunteers receiving SRB or NBP showed increased gut bacterial diversity and altered gut microbial composition at 28 days compared to baseline. Supplementation with SRB or NBP increased total dietary fiber intake similarly, yet only rice bran intake led to a decreased Firmicutes:Bacteroidetes ratio and increased SCFA (propionate and acetate) in stool after 14 days but not at 28 days. These findings support modulation of gut microbiota and fermentation byproducts by SRB and suggest that foods with similar ability to increase dietary fiber intake may not have equal effects on gut microbiota and microbial metabolism.
Project description:Catalase (CAT) can eliminate oxygen radicals, but it is unclear whether exogenous CAT can protect chickens against deoxynivalenol (DON)-induced oxidative stress. This study aimed to investigate the effects of supplemental CAT on antioxidant property and gut microbiota in DON-exposed broilers. A total of 144 one-day-old Lingnan yellow-feathered male broilers were randomly divided into three groups (six replicates/group): control, DON group, and DON + CAT (DONC) group. The control and DON group received a diet without and with DON contamination, respectively, while the DONC group received a DON-contaminated diet with 200 U/kg CAT added. Parameter analysis was performed on d 21. The results showed that DON-induced liver enlargement (p < 0.05) was blocked by CAT addition, which also normalized the increases (p < 0.05) in hepatic oxidative metabolites contents and caspase-9 expression. Additionally, CAT addition increased (p < 0.05) the jejunal CAT and GSH-Px activities coupled with T-AOC in DON-exposed broilers, as well as the normalized DON-induced reductions (p < 0.05) of jejunal villus height (VH) and its ratio for crypt depth. There was a difference (p < 0.05) in gut microbiota among groups. The DON group was enriched (p < 0.05) with some harmful bacteria (e.g., Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Escherichia/Shigella) that elicited negative correlations (p < 0.05) with jejunal CAT activity, and VH. DONC group was differentially enriched (p < 0.05) with certain beneficial bacteria (e.g., Acidobacteriota, Anaerofustis, and Anaerotruncus) that could benefit intestinal antioxidation and morphology. In conclusion, supplemental CAT alleviates DON-induced oxidative stress and intestinal damage in broilers, which can be associated with its ability to improve gut microbiota, aside from its direct oxygen radical-scavenging activity.
Project description:The gut-brain axis is increasingly recognized as an important pathway of communication and of physiological regulation, and gut microbiota seems to play a significant role in this mutual relationship. Oxidative stress is one of the most important pathogenic mechanisms for both neurodegenerative diseases, such as Alzheimer's or Parkinson's, and acute conditions, such as stroke or traumatic brain injury. A peculiar microbiota type might increase brain inflammation and reactive oxygen species levels and might favor abnormal aggregation of proteins. Reversely, brain lesions of various etiologies result in alteration of gut properties and microbiota. These recent hypotheses could open a door for new therapeutic approaches in various neurological diseases.
Project description:IntroductionExtreme water temperature affects the well-being of all aquatic animals, including fish. Higher temperatures can lead to the generation of reactive oxygen species (ROS), which can induce oxidative stress and negatively impact fish health and well-being. This study investigated the protective effects of seaweed extract on growth, antioxidant status, inflammatory responses, and gut microbiota to gain a better understanding of the acclimatization ability of Nile tilapia, Oreochromis niloticus in response to oxidative stress caused by high water temperatures.MethodsRed-seaweed, Gracilaria tenuistipitata rich in polyphenols (i.e., total phenolics and flavonoids content) was considered for the preparation of the Gracilaria extract (GE) for the study. Nile tilapia were fed the GE supplemented diet along with a control diet for 42 days, followed by 14 days of temperature ramping at a rate of 1°C every two days to the desired target (35°C) and 14 days of holding at 32°C for acclimatation.ResultsNile tilapia fed the GE had a significantly higher growth performance attributed to increased muscle fiber size compared to control (p < 0.05) after the 70 days of feeding trial. Fish fed the GE diet also showed a significantly lower lipid peroxidation by decreased malondialdehyde level when compared to control (p < 0.05). Furthermore, GE diet exhibited increased red blood cell counts with the decreased number of cellular and nuclear abnormalities. The gene expression of tight junction (i.e., occludin, claudin1, ZO-1) and nrf2 (antioxidant biomarker) were upregulated, while hsp70 (related to stress response) was downregulated in fish fed the GE diet. Additionally, GE supplementation led to an increase in bacterial diversity and the abundance of phylum Firmicutes, order Lactobacillales, and genera Sphingobacterium and Prevotella in the distal gut of Nile tilapia, which are mostly considered as beneficial for fish.ConclusionThe findings suggest that GE has the potential to be used as a dietary supplement to improve health, particularly as a stress-resistant supplement in the diet for Nile tilapia. This study may help make more informed decisions for tailoring the nutrient requirements of fish in the face of climate warming.
Project description:Oxidative stress is a frequent concern in the breeding of laying hens, and limit the healthy development of poultry. Dexamethasone (DXM) has been demonstrated to induce oxidative stress. Conversely, betaine is an alkaloid with a potent antioxidant activity. The study was designed to investigate the ameliorative effect of betaine on DXM-induced oxidative stress in laying hens. The results revealed that DXM treatment significantly decreased laying rate, shell strength, albumen height, Haugh unit, egg weight, folk weight and albumen weight, alongside increased malondialdehyde (MDA) and decreased total antioxidant capacity (T-AOC) in serum and liver (P < 0.05). In contrast, dietary betaine addition reversed those parameters mentioned above (P < 0.05). Hepatic RNA-seq analysis showed that there existed 110 up- and 88 down-regulated genes in DXM group when compared with the control. Meanwhile there were 117 upregulation and 169 downregulation genes in BT group when compared with DXM group. Besides, we found that dietary betaine addition significantly down-regulated cell adhesion molecules, glycerolipid metabolism and glycolysis gluconeogenesis pathways. In addition, a total of 44 and 94 differential metabolites were identified respectively from Con vs. DXM and DXM vs BT. More importantly, dietary betaine addition significantly increased the levels of pantothenic acid, gamma-Aminobutyric acid, equol and choline, all of which were related to antioxidant and anti-inflammatory properties. Furthermore, gut microbiota analysis indicated that the Chao and Observed_species indexes were remarkably higher in BT group (P<0.05). Heatmap analysis revealed that Subdoligranulum, Prevotella, Blautia, YRC22, Bacteroides, Ruminococcus and Coprococcus were notably restored in BT group (P<0.05). Taken together, our findings collectively illustrate that dietary betaine addition could attenuate DXM-induced oxidative stress, improve egg quality and gut microbes of laying hens.