Project description:Cytokines are important mediators of various stress-related modulations of immune function. A major genetic factor determining inter-individual differences in stress reactivity is polymorphisms of the serotonin (5-hydroxytryptamine, 5HT) transporter (5HTT) gene. A short (S) variant, compared with a long (L) variant, of the promoter region of the 5HTT gene-linked polymorphic region (5HTTLPR) has been related to emotional and stress hyper-reactivity. The present study examined whether the 5HTTLPR can modulate responses of inflammatory cytokines under acute stress. Nine Japanese male participants carrying two copies of the S alleles and nine Japanese males carrying S and L alleles underwent the Trier Social Stress Test (TSST). Inflammatory cytokines, endocrine parameters, heart rate and subjective stress were measured before, during and after the task. The participants carrying the SS alleles, but not those carrying the SL alleles, showed a significant increase of IL-1β immediately after TSST. This hyper-reactivity to acute stress in individuals with the SS alleles was also observed in their heart rate and cortisol levels. These results suggest that the S allele of the 5HTTLPR is consistently associated with stress reactivity in multi-level stress-related biological systems.
Project description:Psychological factors, including depression and social isolation, are important determinants of cardiovascular health. The current study uses a well-validated mouse model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR) to examine the effect of social environment on several pathophysiological and behavioral responses to cerebral ischemia. Male experimental mice were either housed in pairs with an ovariectomized female or socially isolated for the duration of the experiment. Cardiac arrest increased the mRNA expression of the proinflammatory cytokines TNF-α, IL-1β, and IL-6, as well as the microglia marker MAC-1; expression of each of these factors, except IL-6, was further increased among socially isolated mice. Furthermore, socially isolated animals exposed to the CA/CPR procedure displayed significantly higher levels of neuronal cell death and microglia staining within the hippocampus at 7 d following surgery. Social isolation also exacerbated CA/CPR-induced depressive-like behavior and cardiac autonomic dysregulation. In the absence of ischemic damage, social environment had no significant effect on the expression of neuronal cell death, autonomic cardiac control, or behavior. Together, these data suggest that social factors influence the pathophysiological trajectory following cardiac arrest.
Project description:CNS viral infections are one of the major causes of morbidity and mortality worldwide and a significant global public health concern. Uncontrolled inflammation and immune responses in the brain, despite their protective roles, can also be harmful. The suppressor of cytokine signalling (SOCS) proteins is one of the key mechanisms controlling inflammatory and immune responses across all tissues including the brain. SOCS5 is highly expressed in the brain but there is little understanding of its role in the CNS. Using a mouse model of encephalitis, we demonstrate that lack of SOCS5 results in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to wild-type mice, SOCS5-deficient mice had greater weight loss, dysregulated cytokine production and increased neuroinflammatory infiltrates composed predominantly of CD11b+ cells. We conclude that in the brain, SOCS5 is a vital regulator of anti-viral immunity that mediates the critical balance between immunopathology and virus persistence.
Project description:Down-regulation of reactive oxygen species build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld) delayed localized cell death in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv), while other defensive responses were unaffected. To better understand these effects we compared the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings.
Project description:Mono-ubiquitinated PCNA (mono-Ub-PCNA) is generated when replication forks stall and facilitates the DNA lesion bypass process. After resolving a replication stall, Ub-PCNA needs to be de-ubiquitinated to resume high-fidelity DNA synthesis. ATAD5 cooperates with UAF1-USP1 to de-ubiquitinate mono-Ub-PCNA. However, it remains unclear how Ub-PCNA de-ubiquitination is regulated in a timely manner. We found that BAZ1B, a regulatory subunit of the chromatin-remodeling complex, fine-tunes de-ubiquitination of Ub-PCNA. The BAZ1B binding region of ATAD5 surrounds the ATAD5 UAF1-binding domain. Abrogation of the ATAD5-BAZ1B interaction leads to premature de-ubiquitination of Ub-PCNA after hydrogen peroxide treatment. BAZ1B-binding defective ATAD5 cells are more sensitive to oxidative stress compared to wild-type cells. These results suggest that BAZ1B inhibits premature Ub-PCNA de-ubiquitination to maintain genome integrity.
Project description:C1q suppresses JAK-STAT signal transduction and activates PPAR-mediated transcription in macrophages during clearance of modified forms of LDL leading to a reduction in inflammatory response. Human monocyte-derived macrophages (HMDM) were incubated with either oxidized (oxLDL) or acetylated low-density lipoprotein (acLDL) in the presence or absence of C1q for 3 hours. Total RNA was extracted using the Qiagen RNeasy Mini Kit. RNA libraries were constructed using the Illumina TruSeq Stranded mRNA Sample Preparation Kit. Sequences were aligned to a reference genome (hg38), RPKM and raw counts were determined using CASAVA version 1.8.2.
Project description:For over a half-century the anti-malarial drug chloroquine (CQ) has been used as a therapeutic agent, alone or in combination, to treat autoimmune diseases. However, neither the underlying mechanism(s) of action nor their molecular target(s) are well defined. The orphan nuclear receptor Nurr1 (also known as NR4A2) is an essential transcription factor affecting the development and maintenance of midbrain dopaminergic neurons. In this study, using in vitro T cell differentiation models, we demonstrate that CQ activates TREG cell differentiation and induces Foxp3 gene expression in a Nurr1-dependent manner. Remarkably, CQ appears to induce Nurr1 function by two distinct mechanisms: firstly, by direct binding to Nurr1's ligand-binding domain and promoting its transcriptional activity and secondly by upregulation of Nurr1 expression through the CREB signaling pathway. In contrast, CQ suppressed gene expression and differentiation of pathogenic TH17 cells. Importantly, using a valid animal model of inflammatory bowel disease (IBD), we demonstrated that CQ promotes Foxp3 expression and differentiation of TREG cells in a Nurr1-dependent manner, leading to significant improvement of IBD-related symptoms. Taken together, these data suggest that CQ ameliorates autoimmune diseases via regulating Nurr1 function/expression and that Nurr1 is a promising target for developing effective therapeutics of human inflammatory autoimmune diseases.
Project description:Activation of the G-protein coupled formyl peptide receptor 2 (ALX/FPR2) by the lipid mediators lipoxin A4 and resolvin D1 (RvD1) promotes resolution of inflammation. Our previous in vitro studies indicate that RvD1 activation of ALX/FPR2 resolves cytokine-mediated inflammatory responses in mammalian cells. However, the impact of ALX/FPR2 activation on salivary gland function in vivo is unknown. The objective of this study was to determine whether submandibular glands (SMG) from ALX/FPR2(-/-) mice display enhanced inflammatory responses to lipopolysaccharides (LPS) stimulation. For these studies, C57BL/6 and ALX/FPR2(-/-) mice at age 8-12-week-old were treated with LPS by i.p for 24 h. Salivary gland structure and function were analyzed by histopathological assessment, saliva flow rate, quantitative PCR, Western blot analyses and immunofluorescence. Our results showed the following events in the ALX/FPR2(-/-) mice treated with LPS: a) upregulated inflammatory cytokines and decreased M3R (Muscarinic Acetylcholine receptor M3) and AQP5 (Aquaporin 5) protein expression, b) decreased saliva secretion, c) increased apoptosis, d) alteration of tight junction and neuronal damage. Overall, our data suggest that the loss of ALX/FPR2 results in unresolved acute inflammation and SMG dysfunction (xerostomia) in response to LPS that is similar to human salivary gland dysfunction induced by bacterial infection.
Project description:Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown. Herein, we report insights gained from molecular dynamics (MD) simulations into the conformational dynamics that enable ceramide-1-phosphate transfer proteins (CPTPs) to acquire and deliver ceramide-1-phosphate (C1P) during interaction with 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. The focus on CPTP reflects this protein's involvement in regulating pro-inflammatory eicosanoid production and autophagy-dependent inflammasome assembly that drives interleukin (IL-1β and IL-18) production and release by surveillance cells. We found that membrane penetration by CPTP involved α-6 helix and the α-2 helix N-terminal region, was confined to one bilayer leaflet, and was relatively shallow. Large-scale dynamic conformational changes were minimal for CPTP during membrane interaction or C1P uptake except for the α-3/α-4 helices connecting loop, which is located near the membrane interface and interacts with certain phosphoinositide headgroups. Apart from functioning as a shallow membrane-docking element, α-6 helix was found to adeptly reorient membrane lipids to help guide C1P hydrocarbon chain insertion into the interior hydrophobic pocket of the SL binding site.These findings support a proposed 'hydrocarbon chain-first' mechanism for C1P uptake, in contrast to the 'lipid polar headgroup-first' uptake used by most lipid-transfer proteins.
Project description:Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.