Project description:Ezh2-cKO or Utx-cKO in chondrocytes initiate metachondromatosis which containing both exostoses and enchondromas. To figure out whether the exostoses of Ezh2-cKO and Utx-cKO were the similar tumore, we compared the transcriptional profiles using RNA-sequencing of exostoses from Ezh2-cKO and Utx-cKO mice.
Project description:This SuperSeries is composed of the following subset Series: GSE39472: X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner [ChIP-Seq data] GSE39473: The X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex specific manner [Agilent array data] Refer to individual Series
Project description:Embryogenesis requires the timely and coordinated activation of developmental regulators. It has been suggested that the recently discovered class of histone demethylases (UTX and JMJD3) that specifically target the repressive H3K27me3 modification play an important role in the activation of M-bM-^@M-^\bivalentM-bM-^@M-^] genes in response to specific developmental cues. To determine the requirements for UTX in pluripotency and development, we have generated Utx null ES cells and mutant mice. The loss of UTX had a profound effect during embryogenesis. Utx null embryos had reduced somite counts, neural tube closure defects and heart malformation which presented between E9.5 and E13.5. Unexpectedly, homozygous mutant female embryos were more severely affected than hemizygous mutant male embryos. In fact, we observed the survival of a subset of UTX-deficient males which were smaller in size and had reduced life-span. Interestingly, these animals were fertile with normal spermatogenesis. Consistent with a mid-gestation lethality, UTX null male and female ES cells gave rise to all three germ layers in teratoma assays although sex-specific differences could be observed in the activation of developmental regulators in embryoid body assays. Lastly, ChIP-seq analysis revealed an increase in H3K27me3 in Utx null male ES cells. In summary, our data demonstrate sex-specific requirements for this X-linked gene while suggesting a role for UTY during development. Keywords: Expression profiling by array Four-condition experiment, Wt (V6.5) ES vs. RA-treated Wt (V6.5) ES cells; UtxKO ES vs RA-treated UtxKO ES cells. This Series represents the Agilent microarray data only (not ChIP-Seq).
Project description:To evalute how deletion of H3K27me3 demethylases, UTX and JMJD3, affect H3K27me3 enrichment in plasma cells. ChIP-seq for H3K27me3 was performed on CreCtrl and dKO (UTX and JMJD3-deficient) PC at day three post in vivo stimulation with LPS.
Project description:Embryogenesis requires the timely and coordinated activation of developmental regulators. It has been suggested that the recently discovered class of histone demethylases (UTX and JMJD3) that specifically target the repressive H3K27me3 modification play an important role in the activation of M-bM-^@M-^\bivalentM-bM-^@M-^] genes in response to specific developmental cues. To determine the requirements for UTX in pluripotency and development, we have generated Utx null ES cells and mutant mice. The loss of UTX had a profound effect during embryogenesis. Utx null embryos had reduced somite counts, neural tube closure defects and heart malformation which presented between E9.5 and E13.5. Unexpectedly, homozygous mutant female embryos were more severely affected than hemizygous mutant male embryos. In fact, we observed the survival of a subset of UTX-deficient males which were smaller in size and had reduced life-span. Interestingly, these animals were fertile with normal spermatogenesis. Consistent with a mid-gestation lethality, UTX null male and female ES cells gave rise to all three germ layers in teratoma assays although sex-specific differences could be observed in the activation of developmental regulators in embryoid body assays. Lastly, ChIP-seq analysis revealed an increase in H3K27me3 in Utx null male ES cells. In summary, our data demonstrate sex-specific requirements for this X-linked gene while suggesting a role for UTY during development. Examination of H3K27me3 and H3K4me3 in UtxKO ES cells (V6.5 background) vs UtxFlx (V6.5 background) ES cells grown in LIF containing ES cell media or treated with retinoic acid without LIF.
Project description:Mono-methylation of histone H3 on lysine 4 (H3K4me1) and acetylation of histone H3 on lysine 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and enhancers. Although in yeast all H3K4 methylation patterns including H3K4me1 are implemented by Set1/COMPASS, there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of mammalian Mll3/4, can function as a major H3K4 mono-methyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac in various tissues. Assays with the cut wing margin enhancer imply a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrates that Trr is required for H3K4me1 and H3K27ac on chromatin signatures that resemble the histone modification patterns described for enhancers. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 mono-methyltransferase Trr, and the H3K27 demethylase, UTX, cooperate to regulate the transition from inactive/poised to active enhancers. ChIP-seq of Trr, LPT, UTX in Drosophila S2 Cells. ChIP-seq of H3K4me1, H3K4me3, H3K27ac, H3K27me3 in WT and Trr knock-down Drosophila S2 cells. ChIP-seq of H3K4me1, H3K27me3 in LPT knock-down Drosophila S2 cells. ChIP-seq of LPT and UTX in Trr knock-down Drosophila S2 cells. ChIP-seq of H3K4me1 and H3K27me3 in MLL1(+/+), MLL1(-/-), MLL3(+/+), and MLL3(-/-) Mouse Embryonic Fibroblasts (MEFs).
Project description:HNF1A and UTX are putative tumor suppressors in pancreatic cancer. In this study, we have combined mouse genetics, transcriptomics and genome binding studies to link HNF1A and UTX in a molecular mechanism that suppresses pancreatic cancer. In this session, we have profiled UTX, HNF1A, H3K27me3 and H3K27ac in normal and UTX- or HNF1A-deficient mouse pancreas by ChIP-seq experiments. We show that HNF1A recruits UTX to its genomic targets in pancreatic acinar cells, which results in remodeling of the chromatin landscape and activation of a broad transcriptional program of differentiated acinar cells, which in turn indirectly suppresses tumor suppressor pathways.
Project description:T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we chemically inhibited the H3K27me3 demethylase JMJD3 using the GSKJ4 inhibitor and assayed for genome-wide changes in H3K27me3 and JMJD3 enrichment. This piece of data was further integrated to expression changes using RNA sequencing as well as ChIP-Sequencing analysis of H3K27me3 upon genomic knock-down of JMJD3 and UTX. These results, coupled to genomic analysis of primary samples for the genomic status of the UTX gene in T-ALL, helped us to identify a hitherto unknown role of JMJD3 as an oncogenice facilitator in leukemia whereas UTX seems to play a tumor suppressor role. Histone ChIP: Half to one million cells were treated with micrococcal nuclease (MNASE) to generate mononucleosomal particles and an adaptation of the Upstate ChIP protocol was used.