Project description:We introduce STAMPS, a pathway centric web service for the development of targeted proteomics assays. STAMPS guides the user by providing several intuitive interfaces for a rapid and simplified method design. Applying our curated framework to signaling and metabolic pathways, we reduced average assay development time by a factor of ~150 and revealed that the insulin signaling is actively controlled by protein abundance changes in insulin sensitive and resistance states.
Project description:The recovery of DNA from viromes is a major obstacle in the use of long-read sequencing to study their genomes. For this reason, the use of cellular metagenomes (>0.2-μm size range) emerges as an interesting complementary tool, since they contain large amounts of naturally amplified viral genomes from prelytic replication. We have applied second-generation (Illumina NextSeq; short reads) and third-generation (PacBio Sequel II; long reads) sequencing to compare the diversity and features of the viral community in a marine sample obtained from offshore waters of the western Mediterranean. We found that a major wedge of the expected marine viral diversity was directly recovered by the raw PacBio circular consensus sequencing (CCS) reads. More than 30,000 sequences were detected only in this data set, with no homologues in the long- and short-read assembly, and ca. 26,000 had no homologues in the large data set of the Global Ocean Virome 2 (GOV2), highlighting the information gap created by the assembly bias. At the level of complete viral genomes, the performance was similar in both approaches. However, the hybrid long- and short-read assembly provided the longest average length of the sequences and improved the host assignment. Although no novel major clades of viruses were found, there was an increase in the intraclade genomic diversity recovered by long reads that produced an enriched assessment of the real diversity and allowed the discovery of novel genes with biotechnological potential (e.g., endolysin genes). IMPORTANCE We explored the vast genetic diversity of environmental viruses by using a combination of cellular metagenome (as opposed to virome) sequencing using high-fidelity long-read sequences (in this case, PacBio CCS). This approach resulted in the recovery of a representative sample of the viral population, and it performed better (more phage contigs, larger average contig size) than Illumina sequencing applied to the same sample. By this approach, the many biases of assembly are avoided, as the CCS reads recovers (typically around 5 kb) complete genes and even operons, resulting in a better discovery of the viral gene diversity based on viral marker proteins. Thus, biotechnologically promising genes, such as endolysin genes, can be very efficiently searched with this approach. In addition, hybrid assembly produces more complete and longer contigs, which is particularly important for studying little-known viral groups such as the nucleocytoplasmic large DNA viruses (NCLDV).
Project description:Pilot study on leaves from Papua New Guinea showing soil toxicity, extracted in RNAlater in one case and MQ water in another, also MQ blanks
Project description:Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities. There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".