Project description:Multiple studies have demonstrated that interaction with the bone marrow stromal microenvironment contributes to the survival of leukemia cells. One explanation for this phenomenon is the interaction between the cell surface receptors CXCR4 and CXCL12. Through CXCL12/CXCR4-mediated chemotaxis, leukemia cells migrate to microscopic niches within the bone marrow, which leads to increased proliferation and survival. Several studies have suggested that increased CXCR4 expression may portend a poor prognosis in various types of leukemia, possibly due to increased protection of leukemia cells by bone marrow stroma. A potential therapeutic strategy to overcome this stromal-mediated survival advantage is to target CXCR4. Inhibition of CXCR4 may allow leukemia cells to be released from bone marrow niches that confer resistance to chemotherapy and negate the survival benefit imparted by bone marrow stroma.
Project description:Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) in tumor stroma play a key role in disease progression. Recent studies using mice models suggest that CAFs are partly derived from bone marrow and TAMs primarily originate from bone marrow-derived inflammatory monocytes. However, the origin of these cells in humans remains unclear. Hence, we investigated their human origin, using specimens from human secondary tumors that developed after sex-mismatched bone marrow transplantation, by modified immunofluorescent in situ hybridization analysis and triple immunostaining. We observed that most of the ?-smooth muscle actin (?SMA)-positive CAFs in the mammary gland, liver, and oral mucosa specimens obtained 3-19 years after bone marrow transplantation are recipient-derived cells. In contrast, the majority of the peritumoral ?SMA-negative fibroblast-like cells are actually bone marrow-derived HLA-DR-positive myeloid cells, such as macrophages and dendritic cells. Furthermore, almost all CD163-positive TAMs and macrophages present in the non-tumor areas are derived from bone marrow.
Project description:Booreana mice carrying the c-Myb308G point mutation were analyzed to determine changes in early hematopoiesis in the bone marrow and among mature cells in the periphery. This point mutation led to increased numbers of early hematopoietic stem and progenitor cells (HSPCs), with a subsequent reduction in the development of B cells, erythroid cells, and neutrophils, and increased numbers of myeloid cells and granulocytes. Myelopoiesis was further investigated by way of particular subsets affected. A specific question addressed whether booreana mice contained increased numbers of dendritic-like cells (L-DC subset) recently identified in the spleen, since L-DCs arise in vitro by direct differentiation from HSPCs co-cultured over splenic stroma. The non-lethal c-Myb mutation in booreana mice was associated with significantly lower representation of splenic CD8- conventional dendritic cells (cDCs), inflammatory monocytes, and neutrophils compared to wild-type mice. This result confirmed the bone marrow origin of progenitors for these subsets since c-Myb is essential for their development. Production of L-DCs and resident monocytes was not affected by the c-MybE308G mutation. These subsets may derive from different progenitors than those in bone marrow, and are potentially established in the spleen during embryogenesis. An alternative explanation may be needed for why there was no change in CD8+ cDCs in booreana spleen since these cells are known to derive from common dendritic progenitors in bone marrow.
Project description:Chronic myeloid leukemia (CML) is characterized by abnormal proliferation of myeloid cells which when untreated leads to bone marrow failure. Imatinib mesylate (IM) is the first line of therapy for treatment of CML and results in remission in most cases. However, a significant percentage of patients develop chemoresistance to IM, which might be due to the presence of chemoresistant cells in the bone marrow. In the current study, we explored the role of cell-cell interaction of CML cells with the bone marrow stromal cells in the development of chemoresistance in CML. We found that the stromal cells offered long-term chemoprotection to the CML cells from the apoptotic effect of IM. These stroma interacting CML cells were maintained in a non-proliferative stage and had increased ERK1/2 and SMAD1/8 phosphorylation levels. Prolonged interaction of CML cells with the stromal cells in the presence of IM resulted in the acquisition of stroma-free chemoresistance to IM treatment. However, inhibition of actin cytoskeleton, ERK1/2 and SMAD signaling abrogated the chemoresistance acquisition and sensitized the chemoresistant CML cells to IM induced apoptosis.
Project description:Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in ?SMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1's role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.
Project description:Multiple myeloma is an incurable cancer with expansion of malignant plasma cells in the bone marrow. Previous studies have shown that monocytes and macrophages in the bone marrow milieu are important for tumor growth and may play a role in the drug response. We therefore characterized monocytes in bone marrow aspirates by flow cytometry. We found that there was significant correlation between the proportion of CX3CR1 (+), CD16(+)CD14(dim) non classical monocytes, and percent plasma cells (PC) in the bone marrow of myeloma patients. The bone marrow monocytes could be stimulated by TLR ligands to produce cytokines which promote myeloma cell growth. The proportion of the non-classical monocytes increased with the tumor load, particularly in patients with tumor loads in the range of 10-30% bone marrow PC.